In aviation, a ground loop is a rapid rotation of a fixed-wing aircraft in the horizontal plane (yawing) while on the ground. Aerodynamic forces may cause the advancing wing to rise, which may then cause the other wingtip to touch the ground. In severe cases (particularly if the ground surface is soft), the inside wing can dig in, causing the aircraft to swing violently or even cartwheel. [1] In their early gliding experiments, the Wright Brothers referred to this action as well-digging.
In powered aeroplanes, the ground loop phenomenon is predominantly associated with aircraft that have conventional landing gear, due to the centre of gravity being positioned behind the main wheels. It may also occur with tricycle landing gear if excessive load is applied to the nosewheel, a condition known as wheel-barrowing.
If the aircraft heading is different from the aircraft's direction of motion, a sideways force is exerted on the wheels. If this force is in front of the centre of gravity, the resulting moment rotates the aircraft's heading even further from its direction of motion. This increases the force and the process reinforces itself. To avoid a ground loop, the pilot must respond to any turning tendency quickly, while sufficient control authority is available to counteract it. Once the aircraft rotates beyond this point, there is nothing the pilot can do to stop it from rotating further. [2]
Ground loops occur when the aircraft is moving on the ground—either taxiing, landing, or during takeoff. Ground loops can damage the undercarriage and wingtips of an aircraft. Several extreme incidents of ground loop have resulted in fatalities.
In the case of the 1947 crash of Pan Am Flight 121, Captain Michael Graham, one of the surviving passengers, said that the landing would have been successful had an engine on the port wing not dug into the ground, dragging the plane in that direction in a ground loop and breaking it in two. [3]
Ground loops may occur when landing on muddy ground, wet pavement, or frozen surfaces, especially if there are puddles or patches. They may also occur when an aircraft departs a paved surface: for example, after an engine failure in multi-engine airplanes produces asymmetric thrust. Another common cause is failure of a tire or wheel brake, causing a loss of directional control.
A controlled ground loop may also be used as a rudimentary form of emergency braking while landing, "in case one is still rolling too fast to stop." According to Robinet, "The pilot would merely hold the right brake (in this case...no place on the left) harder than the left and wishes the airplane around in a tight turn on the ground. Another way of putting it, the airplane swaps ends. This is a ground loop." [4]
Gliders commencing a takeoff behind a tow plane are vulnerable to ground looping during cross-wind conditions because the slipstream from the propeller of the tow plane generates more lift on the downwind wing of the glider than on the upwind wing. If the flight controls are unable to overcome the rolling tendency at this low speed, the upwind wingtip will contact the ground and initiate a ground loop; the glider pilot must release the tow rope to abandon the takeoff. Gliders with a large main wheel and a tail wheel or tail skid are particularly susceptible to this form of ground looping during cross-wind takeoffs because of the large angle of attack on the wing. Gliders with a nose wheel or nose skid cause the wing to present a lower angle of attack at the commencement of the take off roll and are much less susceptible to this form of ground looping. Tow plane pilots are taught to delay applying full power until the glider is moving fast enough that its tail is off the ground, reducing the angle of attack on the wing.
Pilots may decide to execute a ground loop deliberately, usually as a last resort before hitting an immovable object, as in the case of China Airlines Flight 605. In such cases, energy may be dissipated by damaging the wings of the aircraft to protect the occupants seated in the fuselage. [5]
A fixed-wing aircraft is a heavier-than-air aircraft, such as an airplane, which is capable of flight using aerodynamic lift. Fixed-wing aircraft are distinct from rotary-wing aircraft, and ornithopters. The wings of a fixed-wing aircraft are not necessarily rigid; kites, hang gliders, variable-sweep wing aircraft, and airplanes that use wing morphing are all classified as fixed wing.
Taxiing is the movement of an aircraft on the ground, under its own power, in contrast to towing or pushback where the aircraft is moved by a tug. The aircraft usually moves on wheels, but the term also includes aircraft with skis or floats.
Takeoff is the phase of flight in which an aerospace vehicle leaves the ground and becomes airborne. For aircraft traveling vertically, this is known as liftoff.
In flight dynamics a spin is a special category of stall resulting in autorotation about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different.
Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.
Landing gear is the undercarriage of an aircraft or spacecraft that is used for taxiing, takeoff or landing. For aircraft it is generally needed for both. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company. For aircraft, Stinton makes the terminology distinction undercarriage (British) = landing gear (US).
Wake turbulence is a disturbance in the atmosphere that forms behind an aircraft as it passes through the air. It includes several components, the most significant of which are wingtip vortices and jet-wash, the rapidly moving gases expelled from a jet engine.
A motor glider is a fixed-wing aircraft that can be flown with or without engine power. The FAI Gliding Commission Sporting Code definition is: a fixed-wing aerodyne equipped with a means of propulsion (MoP), capable of sustained soaring flight without thrust from the means of propulsion.
A flap is a high-lift device used to reduce the stalling speed of an aircraft wing at a given weight. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used to reduce the take-off distance and the landing distance. Flaps also cause an increase in drag so they are retracted when not needed.
Conventional landing gear, or tailwheel-type landing gear, is an aircraft undercarriage consisting of two main wheels forward of the center of gravity and a small wheel or skid to support the tail. The term taildragger is also used.
Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips. Indeed, vorticity is trailed at any point on the wing where the lift varies span-wise ; it eventually rolls up into large vortices near the wingtip, at the edge of flap devices, or at other abrupt changes in wing planform.
The Learjet 25 is an American ten-seat, twin-engine, high-speed business jet aircraft manufactured by Learjet. It is a stretched version of the Learjet 24.
A radio-controlled glider is a type of radio-controlled aircraft that normally does not have any form of propulsion. They are able to sustain continuous flight by exploiting the lift produced by slopes and thermals, controlled remotely from the ground with a transmitter. They can be constructed from a variety of materials, including wood, plastic, polymer foams, and composites, and can vary in wing loading from very light to relatively heavy, depending on their intended use.
P-factor, also known as asymmetric blade effect and asymmetric disc effect, is an aerodynamic phenomenon experienced by a moving propeller, wherein the propeller's center of thrust moves off-center when the aircraft is at a high angle of attack. This shift in the location of the center of thrust will exert a yawing moment on the aircraft, causing it to yaw slightly to one side. A rudder input is required to counteract the yawing tendency.
W. K. Kellogg Airport is a city-owned, public-use, joint civil-military airport located three nautical miles (6 km) west of the central business district of Battle Creek, a city in Calhoun County, Michigan, United States. The airport is accessible by road from Helmer Road, and is located near I-94. It is included in the Federal Aviation Administration (FAA) National Plan of Integrated Airport Systems for 2017–2021, in which it is categorized as a regional general aviation facility. It is also known as W. K. Kellogg Regional Airport.
A proprotor is a spinning airfoil that function as both an airplane-style propeller and a helicopter-style rotor. Several proprotor-equipped convertiplanes, such as the Bell Boeing V-22 Osprey tiltrotor, are capable of switching back and forth between flying akin to both helicopters and fixed-wing aircraft. Accordingly this type of airfoil has been predominantly applied to vertical takeoff and landing (VTOL) aircraft.
The Dunne D.1, was an experimental tailless aircraft built in the UK in 1907. It comprised a main unit which could be flown as a glider, to which a chassis unit with power train could be added. The glider achieved a short flight in 1907. The D.1 was later rebuilt as the powered D.4, which achieved short hops in 1908.
A glider or sailplane is a type of glider aircraft used in the leisure activity and sport of gliding. This unpowered aircraft can use naturally occurring currents of rising air in the atmosphere to gain altitude. Sailplanes are aerodynamically streamlined and so can fly a significant distance forward for a small decrease in altitude.
Marion Municipal Airport is three miles northeast of Marion, in Marion County, Ohio. The FAA's National Plan of Integrated Airport Systems for 2011–2015 categorized it as a general aviation facility.
Weltzien Skypark is a privately owned, public use airport located 3 miles west of Wadsworth, Ohio, in Medina County. The airpark sits on 26 acres at an elevation of 1210 feet.