HCST (gene)

Last updated
HCST
Identifiers
Aliases HCST , DAP10, KAP10, PIK3AP, hematopoietic cell signal transducer
External IDs OMIM: 604089 MGI: 1344360 HomoloGene: 8024 GeneCards: HCST
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014266
NM_001007469

NM_011827

RefSeq (protein)

NP_001007470
NP_055081

NP_035957

Location (UCSC) Chr 19: 35.9 – 35.9 Mb Chr 7: 30.12 – 30.12 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Hematopoietic cell signal transducer is a protein that in humans is encoded by the HCST gene. [5] [6]

This gene encodes a transmembrane signaling adaptor that contains a YxxM motif in its cytoplasmic domain. The encoded protein may form part of the immune recognition receptor complex with the C-type lectin-like receptor NKG2D. As part of this receptor complex, this protein may activate phosphatidylinositol 3-kinase dependent signaling pathways through its intracytoplasmic YxxM motif. This receptor complex may have a role in cell survival and proliferation by activation of NK and T cell responses. Alternative splicing results in two transcript variants encoding different isoforms. [6]

Related Research Articles

<span class="mw-page-title-main">HLA-E</span>

HLA class I histocompatibility antigen, alpha chain E (HLA-E) also known as MHC class I antigen E is a protein that in humans is encoded by the HLA-E gene. The human HLA-E is a non-classical MHC class I molecule that is characterized by a limited polymorphism and a lower cell surface expression than its classical paralogues. The functional homolog in mice is called Qa-1b, officially known as H2-T23.

Killer-cell immunoglobulin-like receptors (KIRs), are a family of type I transmembrane glycoproteins expressed on the plasma membrane of natural killer (NK) cells and a minority of T cells. At least 15 genes and 2 pseudogenes encoding KIR map in a 150-kb region of the leukocyte receptor complex (LRC) on human chromosome 19q13.4.

An immunoreceptor tyrosine-based inhibitory motif (ITIM), is a conserved sequence of amino acids that is found intracellularly in the cytoplasmic domains of many inhibitory receptors of the non-catalytic tyrosine-phosphorylated receptor family found on immune cells. These immune cells include T cells, B cells, NK cells, dendritic cells, macrophages and mast cells. ITIMs have similar structures of S/I/V/LxYxxI/V/L, where x is any amino acid, Y is a tyrosine residue that can be phosphorylated, S is the amino acide Serine, I is the amino acid Isoleucine, and V is the amino acid Valine. ITIMs recruit SH2 domain-containing phosphatases, which inhibit cellular activation. ITIM-containing receptors often serve to target Immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, resulting in an innate inhibition mechanism within cells. ITIM bearing receptors have important role in regulation of immune system allowing negative regulation at different levels of the immune response.

NKG2 also known as CD159 is a receptor for natural killer cells. There are 7 NKG2 types: A, B, C, D, E, F and H. NKG2D is an activating receptor on the NK cell surface. NKG2A dimerizes with CD94 to make an inhibitory receptor (CD94/NKG2).

<span class="mw-page-title-main">TYROBP</span> Protein-coding gene in the species Homo sapiens

TYRO protein tyrosine kinase-binding protein is an adapter protein that in humans is encoded by the TYROBP gene.

<span class="mw-page-title-main">CD244</span> Protein-coding gene in the species Homo sapiens

CD244 is a human protein encoded by the CD244 gene. It is also known as Natural Killer Cell Receptor 2B4

<span class="mw-page-title-main">NCR3</span>

Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 and as NKp30. NCR3 belongs to the family of NCR membrane receptors together with NCR1 (NKp46) and NCR2 (NKp44).

<span class="mw-page-title-main">KLRC4</span>

NKG2-F type II integral membrane protein is a protein that in humans is encoded by the KLRC4 gene.

<span class="mw-page-title-main">NCR1</span> Mammalian protein found in Homo sapiens

Natural cytotoxicity triggering receptor 1 is a protein that in humans is encoded by the NCR1 gene. NCR1 has also been designated as CD335 (cluster of differentiation, NKP46, NKp46, NK-p46, and LY94.

<span class="mw-page-title-main">SLAMF6</span> Protein-coding gene in the species Homo sapiens

SLAM family member 6 is a protein that in humans is encoded by the SLAMF6 gene.

<span class="mw-page-title-main">KLRC2</span>

NKG2-C type II integral membrane protein or NKG2C is a protein that in humans is encoded by the KLRC2 gene. It is also known as or cluster of differentiation 159c (CD159c).

<span class="mw-page-title-main">Interleukin-21 receptor</span>

Interleukin 21 receptor is a type I cytokine receptor. IL21R is its human gene.

<span class="mw-page-title-main">NCR2</span>

Natural cytotoxicity triggering receptor 2 is a protein that in humans is encoded by the NCR2 gene. NCR2 has also been designated as CD336, NKp44, NKP44; NK-p44, LY95, and dJ149M18.1.

<span class="mw-page-title-main">ULBP1</span>

UL16 binding protein 1 (ULBP1) is a cell surface glycoprotein encoded by ULBP1 gene located on the chromosome 6. ULBP1 is related to MHC class I molecules, but its gene maps outside the MHC locus. The domain structure of ULBP1 differs significantly from those of conventional MHC class I molecules. It does not contain the α3 domain and the transmembrane segment. ULBP1 is thus composed of only the α1α2 domain which is linked to the cell membrane by the GPI anchor. It functions as a stress-induced ligand for NKG2D receptor. ULBP1 is, for example, upregulated during HCMV infection. Binding of HCMV-encoded UL16 glycoprotein to ULBP1 interferes with cell surface localization of ULBP1; this represents another mechanism by which HCMV-infected cells might escape the immune system.

<span class="mw-page-title-main">SIRPB1</span>

Signal-regulatory protein beta-1 is a protein that in humans is encoded by the SIRPB1 gene. SIRPB1 has also recently been designated CD172B.

<span class="mw-page-title-main">CLEC1B</span>

C-type lectin domain family 1 member B is a protein that in humans is encoded by the CLEC1B gene.

<span class="mw-page-title-main">LILRA2</span> Protein-coding gene in the species Homo sapiens

Leukocyte immunoglobulin-like receptor subfamily A member 2 is a protein that in humans is encoded by the LILRA2 gene.

<span class="mw-page-title-main">Killer activation receptor</span>

Killer Activation Receptors (KARs) are receptors expressed on the plasmatic membrane of Natural Killer cells. KARs work together with inhibitory receptors, which inactivate them in order to regulate the NK cells functions on hosted or transformed cells. These two kinds of specific receptors have some morphological features in common, such as being transmembrane proteins. The similarities are specially found in the extracellular domains and, the differences tend to be in the intracellular domains. KARs and KIRs can have tyrosine containing activatory or inhibitory motifs in the intracellular part of the receptor molecule.

<span class="mw-page-title-main">NKG2D</span>

NKG2D is an activating receptor (transmembrane protein) belonging to the NKG2 family of C-type lectin-like receptors. NKG2D is encoded by KLRK1 (killer cell lectin like receptor K1) gene which is located in the NK-gene complex (NKC) situated on chromosome 6 in mice and chromosome 12 in humans. In mice, it is expressed by NK cells, NK1.1+ T cells, γδ T cells, activated CD8+ αβ T cells and activated macrophages. In humans, it is expressed by NK cells, γδ T cells and CD8+ αβ T cells. NKG2D recognizes induced-self proteins from MIC and RAET1/ULBP families which appear on the surface of stressed, malignant transformed, and infected cells.

CD94/NKG2 is a family of C-type lectin receptors which are expressed predominantly on the surface of NK cells and a subset of CD8+ T-lymphocyte. These receptors stimulate or inhibit cytotoxic activity of NK cells, therefore they are divided into activating and inhibitory receptors according to their function. CD94/NKG2 recognize nonclassical MHC glycoproteins class I (HLA-E in human and Qa-1 molecules in the mouse).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000126264 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000064109 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (Aug 1999). "An activating immunoreceptor complex formed by NKG2D and DAP10". Science. 285 (5428): 730–2. doi:10.1126/science.285.5428.730. PMID   10426994.
  6. 1 2 "Entrez Gene: HCST hematopoietic cell signal transducer".

Further reading