HP1BP3

Last updated
HP1BP3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases HP1BP3 , HP1-BP74, HP1BP74, heterochromatin protein 1 binding protein 3
External IDs OMIM: 616072 MGI: 109369 HomoloGene: 7774 GeneCards: HP1BP3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016287
NM_001372052

RefSeq (protein)
Location (UCSC) Chr 1: 20.74 – 20.79 Mb Chr 4: 137.94 – 137.97 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Heterochromatin protein 1, binding protein 3 is a protein that in humans is encoded by the HP1BP3 gene. [5] It has been identified as a novel subtype of the linker histone H1, involved in the structure of heterochromatin [6] [7] [8]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Constitutive heterochromatin</span>

Constitutive heterochromatin domains are regions of DNA found throughout the chromosomes of eukaryotes. The majority of constitutive heterochromatin is found at the pericentromeric regions of chromosomes, but is also found at the telomeres and throughout the chromosomes. In humans there is significantly more constitutive heterochromatin found on chromosomes 1, 9, 16, 19 and Y. Constitutive heterochromatin is composed mainly of high copy number tandem repeats known as satellite repeats, minisatellite and microsatellite repeats, and transposon repeats. In humans these regions account for about 200Mb or 6.5% of the total human genome, but their repeat composition makes them difficult to sequence, so only small regions have been sequenced.

<span class="mw-page-title-main">MBD1</span> Protein-coding gene in the species Homo sapiens

Methyl-CpG-binding domain protein 1 is a protein that in humans is encoded by the MBD1 gene. The protein encoded by MBD1 binds to methylated sequences in DNA, and thereby influences transcription. It binds to a variety of methylated sequences, and appears to mediate repression of gene expression. It has been shown to play a role in chromatin modification through interaction with the histone H3K9 methyltransferase SETDB1. H3K9me3 is a repressive modification.

The family of heterochromatin protein 1 (HP1) consists of highly conserved proteins, which have important functions in the cell nucleus. These functions include gene repression by heterochromatin formation, transcriptional activation, regulation of binding of cohesion complexes to centromeres, sequestration of genes to the nuclear periphery, transcriptional arrest, maintenance of heterochromatin integrity, gene repression at the single nucleosome level, gene repression by heterochromatization of euchromatin, and DNA repair. HP1 proteins are fundamental units of heterochromatin packaging that are enriched at the centromeres and telomeres of nearly all eukaryotic chromosomes with the notable exception of budding yeast, in which a yeast-specific silencing complex of SIR proteins serve a similar function. Members of the HP1 family are characterized by an N-terminal chromodomain and a C-terminal chromoshadow domain, separated by a hinge region. HP1 is also found at some euchromatic sites, where its binding can correlate with either gene repression or gene activation. HP1 was originally discovered by Tharappel C James and Sarah Elgin in 1986 as a factor in the phenomenon known as position effect variegation in Drosophila melanogaster.

<span class="mw-page-title-main">Lamin B receptor</span> Protein-coding gene in the species Homo sapiens

Lamin-B receptor is a protein, and in humans, it is encoded by the LBR gene.

<span class="mw-page-title-main">CBX1</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 1 is a protein that in humans is encoded by the CBX1 gene.

<span class="mw-page-title-main">CBX3</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 3 is a protein that is encoded by the CBX3 gene in humans.

<span class="mw-page-title-main">TRIM28</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing 28 (TRIM28), also known as transcriptional intermediary factor 1β (TIF1β) and KAP1, is a protein that in humans is encoded by the TRIM28 gene.

<span class="mw-page-title-main">MCM4</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM4 is a protein that in humans is encoded by the MCM4 gene.

<span class="mw-page-title-main">KAT2A</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase KAT2A is an enzyme that in humans is encoded by the KAT2A gene.

<span class="mw-page-title-main">CENPA</span> Protein-coding gene in the species Homo sapiens

Centromere protein A, also known as CENPA, is a protein which in humans is encoded by the CENPA gene. CENPA is a histone H3 variant which is the critical factor determining the kinetochore position(s) on each chromosome in most eukaryotes including humans.

<span class="mw-page-title-main">CHAF1A</span> Protein-coding gene in the species Homo sapiens

Chromatin assembly factor 1 subunit A is a protein that in humans is encoded by the CHAF1A gene.

<span class="mw-page-title-main">HMGN1</span> Protein-coding gene in the species Homo sapiens

Non-histone chromosomal protein HMG-14 is a protein that in humans is encoded by the HMGN1 gene.

<span class="mw-page-title-main">TRIM24</span> Protein-coding gene in the species Homo sapiens

Tripartite motif-containing 24 (TRIM24) also known as transcriptional intermediary factor 1α (TIF1α) is a protein that, in humans, is encoded by the TRIM24 gene.

<span class="mw-page-title-main">HIST3H2BB</span> Protein-coding gene in the species Homo sapiens

Histone H2B type 3-B is a protein that in humans is encoded by the HIST3H2BB gene.

<span class="mw-page-title-main">HMGN2</span> Protein-coding gene in the species Homo sapiens

Non-histone chromosomal protein HMG-17 is a protein that in humans is encoded by the HMGN2 gene.

<span class="mw-page-title-main">CBX5 (gene)</span> Protein-coding gene in humans

Chromobox protein homolog 5 is a protein that in humans is encoded by the CBX5 gene. It is a highly conserved, non-histone protein part of the heterochromatin family. The protein itself is more commonly called HP1α. Heterochromatin protein-1 (HP1) has an N-terminal domain that acts on methylated lysines residues leading to epigenetic repression. The C-terminal of this protein has a chromo shadow-domain (CSD) that is responsible for homodimerizing, as well as interacting with a variety of chromatin-associated, non-histone proteins.

<span class="mw-page-title-main">HAT1</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase 1, also known as HAT1, is an enzyme that, in humans, is encoded by the HAT1 gene.

<span class="mw-page-title-main">EHMT1</span> Protein-coding gene in the species Homo sapiens

Euchromatic histone-lysine N-methyltransferase 1, also known as G9a-like protein (GLP), is a protein that in humans is encoded by the EHMT1 gene.

H3Y41P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 41st tyrosine residue of the histone H3 protein.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000127483 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028759 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: heterochromatin protein 1, binding protein 3" . Retrieved 2011-08-30.
  6. Garfinkel BP, Melamed-Book N, Anuka E, Bustin M, Orly J (February 2015). "HP1BP3 is a novel histone H1 related protein with essential roles in viability and growth". Nucleic Acids Research. 43 (4): 2074–90. doi:10.1093/nar/gkv089. PMC   4344522 . PMID   25662603.
  7. Dutta B, Ren Y, Hao P, Sim KH, Cheow E, Adav S, Tam JP, Sze SK (September 2014). "Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression". Molecular & Cellular Proteomics. 13 (9): 2183–97. doi: 10.1074/mcp.M113.034975 . PMC   4159643 . PMID   24830416.
  8. Hayashihara K, Uchiyama S, Shimamoto S, Kobayashi S, Tomschik M, Wakamatsu H, No D, Sugahara H, Hori N, Noda M, Ohkubo T, Zlatanova J, Matsunaga S, Fukui K (February 2010). "The middle region of an HP1-binding protein, HP1-BP74, associates with linker DNA at the entry/exit site of nucleosomal DNA". The Journal of Biological Chemistry. 285 (9): 6498–507. doi: 10.1074/jbc.M109.092833 . PMC   2825445 . PMID   20042602.

Further reading