Hadacidin

Last updated
Hadacidin
The chemical structure of hadacidin.png
Names
IUPAC name
N-Formyl-N-hydroxyglycine
Systematic IUPAC name
(N-Hydroxyformamido)acetic acid
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C3H5NO4/c5-2-4(8)1-3(6)7/h2,8H,1H2,(H,6,7)
    Key: URJHVPKUWOUENU-UHFFFAOYSA-N
  • InChI=1/C3H5NO4/c5-2-4(8)1-3(6)7/h2,8H,1H2,(H,6,7)
    Key: URJHVPKUWOUENU-UHFFFAOYAD
  • C(C(=O)O)N(C=O)O
Properties
C3H5NO4
Molar mass 119.076 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hadacidin, and hadacidin analogues, have anticancer activity and activity against adenylosuccinate synthetase. [1]

Hadacidin is the simplest known naturally occurring hydroxamic acid. The hydroxylamino group is frequently donated by a hydroxylamino acid such as 8-N-hydroxyornithine of the siderochromes. This compound, first isolated and characterized by Kaczka et al. in 1962, [2] seemed well suited for a study of the route of hydroxamic acid biosynthesis. The hydroxamate bond may be considered to be a peptide bond with an oxygen atom on the amide nitrogen, but there is no a priori reason to decide whether the oxygen atom is introduced before or after the formation of the amide bond. In the latter case, formylglycine would be an intermediate in hadacidin biosynthesis. N-Hydroxylation of an amide bond was reported by Cramer et al. (1960), who found that N-hydroxy-2-acetylaminofluorene was formed in the intact rat upon administration of 2-acetylaminofluorene. Nevertheless, this finding cannot be considered direct proof of N-hydroxylation of an amide bond because, as the authors point out, the acetyl group is labile in their experiments, and hydroxylation of the amino group might have occurred.

Glycine, formate, and the 2-carbon of serine were all found to be very quickly incorporated into hadacidin during its synthesis by Penicillium aurantioviolaceum . The experiment showed that C-1 of glycine was found almost exclusively in the glycyl portion of hadacidin while formate, the 3-carbon of serine, and the 2-carbon of glycine were incorporated into both the glycyl and formyl portions of the hydroxamate. N-Hydroxyglycine was incorporated into hadacidin at a rate equal to that for glycine in 3-hr periods and to a much greater extent in longer time periods. N-Hydroxyglycine, but not glycine, brought about a net stimulation of hydroxamate production. Nitroacetic acid, glyoxylic acid oxime, and formylglycine were not rapidly incorporated into hadacidin. Experiments showed that the hydroxylamino oxygen atom of hadacidin is derived from oxygen gas rather than water. The experimental results are consistent with the hypothesis that the biosynthesis of hadacidin occurs by N-oxygenation of glycine to yield N-hydroxyglycine followed by N-formylation to yield the hydroxamate. [2] [3]

Notes

  1. Tibrewal, N; Elliott, GI (2011). "Evaluation of hadacidin analogues". Bioorganic & Medicinal Chemistry Letters. 21 (1): 517–9. doi:10.1016/j.bmcl.2010.10.088. PMID   21129960.
  2. 1 2 Kaczka, E. A., Gitterman, C. O., Dulaney, E. L., and Folkers, K. (1962), Biochemistry 1, 340.
  3. Baker, J. R., and Chaykin, S. (1960), Bioclzim. Bioplzjs.Acta 41, 548.

Related Research Articles

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, such as in the amino acids asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Protein primary structure</span> Linear sequence of amino acids in a peptide or protein

Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the laboratory. Protein primary structures can be directly sequenced, or inferred from DNA sequencess.

Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group -NH
2
but is rather a secondary amine. The secondary amine nitrogen is in the protonated form (NH2+) under biological conditions, while the carboxyl group is in the deprotonated −COO form. The "side chain" from the α carbon connects to the nitrogen forming a pyrrolidine loop, classifying it as a aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate. It is encoded by all the codons starting with CC (CCU, CCC, CCA, and CCG).

<span class="mw-page-title-main">Triglyceride</span> Any ester of glycerol having all three hydroxyl groups esterified with fatty acids

A triglyceride is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates, as well as vegetable fat. They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver, and are a major component of human skin oils.

<span class="mw-page-title-main">Post-translational modification</span> Biological processes

Post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes translating mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

Beta-keratin (β-keratin) is a member of a structural protein family found in the epidermis of reptiles and birds. Beta-keratins were named so because they are components of epidermal stratum corneum rich in stacked beta sheets, in contrast to alpha-keratins, intermediate-filament proteins also found in stratum corneum and rich in alpha helices. Because the accurate use of the term keratin is limited to the alpha-keratins, the term "beta-keratins" in recent works is replaced by "corneous beta-proteins" or "keratin-associated beta-proteins."

Nonribosomal peptides (NRP) are a class of peptide secondary metabolites, usually produced by microorganisms like bacteria and fungi. Nonribosomal peptides are also found in higher organisms, such as nudibranchs, but are thought to be made by bacteria inside these organisms. While there exist a wide range of peptides that are not synthesized by ribosomes, the term nonribosomal peptide typically refers to a very specific set of these as discussed in this article.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Formate</span> Salt or ester of formic acid

Formate is the conjugate base of formic acid. Formate is an anion or its derivatives such as ester of formic acid. The salts and esters are generally colorless.

In the nomenclature of organic chemistry, a locant is a term to indicate the position of a functional group or substituent within a molecule.

In organic chemistry, Madelung synthesis is a chemical reaction that produces indoles by the intramolecular cyclization of N-phenylamides using strong base at high temperature. The Madelung synthesis was reported in 1912 by Walter Madelung, when he observed that 2-phenylindole was synthesized using N-benzoyl-o-toluidine and two equivalents of sodium ethoxide in a heated, airless reaction. Common reaction conditions include use of sodium or potassium alkoxide as base in hexane or tetrahydrofuran solvents, at temperatures ranging between 200–400 °C. A hydrolysis step is also required in the synthesis. The Madelung synthesis is important because it is one of few known reactions that produce indoles from a base-catalyzed thermal cyclization of N-acyl-o-toluidines.

In enzymology, formate C-acetyltransferase is an enzyme. Pyruvate formate lyase is found in Escherichia coli and other organisms. It helps regulate anaerobic glucose metabolism. Using radical non-redox chemistry, it catalyzes the reversible conversion of pyruvate and coenzyme-A into formate and acetyl-CoA. The reaction occurs as follows:

Glyoxylate and dicarboxylate metabolism describes a variety of reactions involving glyoxylate or dicarboxylates. Glyoxylate is the conjugate base of glyoxylic acid, and within a buffered environment of known pH such as the cell cytoplasm these terms can be used almost interchangeably, as the gain or loss of a hydrogen ion is all that distinguishes them, and this can occur in the aqueous environment at any time. Likewise dicarboxylates are the conjugate bases of dicarboxylic acids, a general class of organic compounds containing two carboxylic acid groups, such as oxalic acid or succinic acid.

<span class="mw-page-title-main">Absinthin</span> Chemical compound

Absinthin is a naturally produced triterpene lactone from the plant Artemisia absinthium (Wormwood). It constitutes one of the most bitter chemical agents responsible for absinthe's distinct taste. The compound shows biological activity and has shown promise as an anti-inflammatory agent, and should not to be confused with thujone, a neurotoxin also found in Artemisia absinthium.

<span class="mw-page-title-main">Balanol</span> Fungal metabolite

Balanol is a fungal metabolite produced by the fungus Verticillium balanoides. It is a potent inhibitor of the serine/threonine kinases protein kinase A (PKA) and protein kinase C (PKC), binding in a similar manner with that of ATP. Balanol was discovered in 1993 in the search for novel inhibitors of PKC, a member of a family of serine/threonine kinases whose overactivation is associated with numerous human diseases of signal transduction including cancer. However, much of the research on balanol focuses on how chemical modifications of the molecular structure affect binding to PKA. Indeed, balanol, its chemically altered analogs, and their interactions with PKA in particular are used to illuminate the roles of selectivity and protein flexibility in the inhibition of kinases. For instance, the X-ray crystal structure of balanol in complex with PKA was used in order to confer selectivity and to improve pharmacological efficacy of inhibitors of the H. sapiens Akt (PKB), another serine/threonine protein kinase implicated in the proper functioning of many cellular processes.

<span class="mw-page-title-main">Non-proteinogenic amino acids</span> Are not naturally encoded in the genome

In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important:

Germanium(II) hydrides, also called germylene hydrides, are a class of Group 14 compounds consisting of low-valent germanium and a terminal hydride. They are also typically stabilized by an electron donor-acceptor interaction between the germanium atom and a large, bulky ligand.

<span class="mw-page-title-main">Hemolithin</span> Protein claimed to be of extraterrestrial origin

Hemolithin is a proposed protein containing iron and lithium, of extraterrestrial origin, according to an unpublished preprint. The result has not been published in any peer-reviewed scientific journal. The protein was purportedly found inside two CV3 meteorites, Allende and Acfer-086, by a team of scientists led by Harvard University biochemist Julie McGeoch. The report of the discovery was met with some skepticism and suggestions that the researchers had extrapolated too far from incomplete data.