Harry R. Allcock

Last updated

Harry R. Allcock
Born (1932-04-08) 8 April 1932 (age 92)
Loughborough, England
Alma mater University of London
Scientific career
FieldsChemistry
InstitutionsPennsylvania State University

Harry R. Allcock (born 8 April 1932, Loughborough, England) [1] is Evan Pugh Professor of chemistry at Pennsylvania State University in the United States. [2]

Contents

Allcock obtained his B.Sc. in 1953 and his Ph.D. in 1956, both at the University of London. He is notable for his work on the "inorganic rubbers" with a phosphorus-nitrogen backbone (polyphosphazenes). With James E. Mark and Robert West, Allcock co-authored the book Inorganic Polymers (Oxford University Press, 2005). He also wrote Introduction to Materials Chemistry (John Wiley & Sons, 2008), Phosphorus-Nitrogen Compounds Cyclic, Linear, and High Polymeric Systems (Academic Press, 1972), Chemistry and Applications of Polyphosphazenes (Wiley-Interscience, 2002, and co-authored Contemporary Polymer Chemistry (Prentice Hall, 2003) with Fred Lampe and James Mark.

Allcock was elected as a member into the National Academy of Engineering in 2014 for the development of polyphosphazenes, a new class of biomaterials.

Awards and honors

See also

Related Research Articles

<span class="mw-page-title-main">Nonmetal</span> Chemical element that mostly lacks the characteristics of a metal

Nonmetals are chemical elements that mostly lack distinctive metallic properties. They range from colorless gases like hydrogen to shiny crystals like iodine. Physically, they are usually lighter than metals; brittle or crumbly if solid; and often poor conductors of heat and electricity. Chemically, nonmetals have high electronegativity ; and their oxides tend to be acidic.

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Robert H. Grubbs</span> American chemist and Nobel Laureate (1942–2021)

Robert Howard GrubbsForMemRS was an American chemist and the Victor and Elizabeth Atkins Professor of Chemistry at the California Institute of Technology in Pasadena, California. He was a co-recipient of the 2005 Nobel Prize in Chemistry for his work on olefin metathesis.

Jean M.J. Fréchet is a French-American chemist and professor emeritus at the University of California, Berkeley. He is best known for his work on polymers including polymer-supported chemistry, chemically amplified photoresists, dendrimers, macroporous separation media, and polymers for therapeutics. Ranked among the top 10 chemists in 2021, he has authored nearly 900 scientific paper and 200 patents including 96 US patents. His research areas include organic synthesis and polymer chemistry applied to nanoscience and nanotechnology with emphasis on the design, fundamental understanding, synthesis, and applications of functional macromolecules.

Craig Jon Hawker is an Australian-born chemist. His research has focused on the interface between organic and polymer chemistry, with emphasis on the design, synthesis, and application of well-defined macromolecular structures in biotechnology, microelectronics, and surface science. Hawker holds more than 45 U.S. patents, and he has co-authored over 300 papers in the areas of nanotechnology, materials science, and chemistry. He was listed as one of the top 100 most cited chemists worldwide over the decade 1992–2002, and again in 2000–2010.

<span class="mw-page-title-main">Polythiazyl</span> Chemical compound

Polythiazyl, (SN)x, is an electrically conductive, gold- or bronze-colored polymer with metallic luster. It was the first conductive inorganic polymer discovered and was also found to be a superconductor at very low temperatures. It is a fibrous solid, described as "lustrous golden on the faces and dark blue-black", depending on the orientation of the sample. It is air stable and insoluble in all solvents.

<span class="mw-page-title-main">Polyphosphazene</span>

Polyphosphazenes include a wide range of hybrid inorganic-organic polymers with a number of different skeletal architectures with the backbone P-N-P-N-P-N-. In nearly all of these materials two organic side groups are attached to each phosphorus center. Linear polymers have the formula (N=PR1R2)n, where R1 and R2 are organic (see graphic). Other architectures are cyclolinear and cyclomatrix polymers in which small phosphazene rings are connected together by organic chain units. Other architectures are available, such as block copolymer, star, dendritic, or comb-type structures. More than 700 different polyphosphazenes are known, with different side groups (R) and different molecular architectures. Many of these polymers were first synthesized and studied in the research group of Harry R. Allcock.

<span class="mw-page-title-main">Hexachlorophosphazene</span> Chemical compound

Hexachlorophosphazene is an inorganic compound with the chemical formula (NPCl2)3. The molecule has a cyclic, unsaturated backbone consisting of alternating phosphorus and nitrogen atoms, and can be viewed as a trimer of the hypothetical compound N≡PCl2. Its classification as a phosphazene highlights its relationship to benzene. There is large academic interest in the compound relating to the phosphorus-nitrogen bonding and phosphorus reactivity.

Tobin Jay Marks is an inorganic chemistry Professor, the Vladimir N. Ipatieff Professor of Catalytic Chemistry, Professor of Material Science and Engineering, Professor of Chemical and Biological Engineering, and Professor of Applied Physics at Northwestern University in Evanston, Illinois. Among the themes of his research are synthetic organo-f-element and early-transition metal organometallic chemistry, polymer chemistry, materials chemistry, homogeneous and heterogeneous catalysis, molecule-based photonic materials, superconductivity, metal-organic chemical vapor deposition, and biological aspects of transition metal chemistry.

In 1957, the research organization of the Chemicals Department of E. I. du Pont de Nemours and Company was renamed Central Research Department, beginning the history of the premier scientific organization within DuPont and one of the foremost industrial laboratories devoted to basic science. Located primarily at the DuPont Experimental Station and Chestnut Run, in Wilmington, Delaware, it expanded to include laboratories in Geneva, Switzerland, Seoul, South Korea, Shanghai, China, and India (Hyderabad). In January, 2016 a major layoff marked the end of the organization.

Fred Basolo was an American inorganic chemist. He received his Ph.D. at the University of Illinois at Urbana-Champaign in 1943, under Prof. John C. Bailar, Jr. Basolo spent his professional career at Northwestern University. He was a prolific contributor to the fields of coordination chemistry, organometallic, and bioinorganic chemistry, publishing over 400 papers. He supervised many Ph.D. students. With colleague Ralph Pearson, he co-authored the influential monograph "Mechanisms of Inorganic Reactions", which illuminated the importance of mechanisms involving coordination compounds. This work, which integrated concepts from ligand field theory and physical organic chemistry, signaled a shift from a highly descriptive nature of coordination chemistry to a more quantitative science.

In polymer chemistry, an inorganic polymer is a polymer with a skeletal structure that does not include carbon atoms in the backbone. Polymers containing inorganic and organic components are sometimes called hybrid polymers, and most so-called inorganic polymers are hybrid polymers. One of the best known examples is polydimethylsiloxane, otherwise known commonly as silicone rubber. Inorganic polymers offer some properties not found in organic materials including low-temperature flexibility, electrical conductivity, and nonflammability. The term inorganic polymer refers generally to one-dimensional polymers, rather than to heavily crosslinked materials such as silicate minerals. Inorganic polymers with tunable or responsive properties are sometimes called smart inorganic polymers. A special class of inorganic polymers are geopolymers, which may be anthropogenic or naturally occurring.

Larry Dalton is an American chemist best known for his work in polymeric nonlinear electro-optics.

<span class="mw-page-title-main">Poly(dichlorophosphazene)</span> Chemical compound

Poly(dichlorophosphazene), also called dichlorophosphazine polymer or phosphonitrilechloride polymer, is a chemical compound with formula (PNCl2)n. It is an inorganic (hence carbon-free) chloropolymer, whose backbone is a chain of alternating phosphorus and nitrogen atoms, connected by alternating single and double covalent bonds.

Robert Byron Bird was an American chemical engineer and professor emeritus in the department of chemical engineering at the University of Wisconsin-Madison. He was known for his research in transport phenomena of non-Newtonian fluids, including fluid dynamics of polymers, polymer kinetic theory, and rheology. He, along with Warren E. Stewart and Edwin N. Lightfoot, was an author of the classic textbook Transport Phenomena. Bird was a recipient of the National Medal of Science in 1987.

<span class="mw-page-title-main">Choy Jin-ho</span> South Korean chemist (born 1948)

Choy Jin-ho is a South Korean scientist. He was a professor in the department of chemistry at Seoul National University from 1981 to 2004, and thereafter a distinguished professor and director of the Center for Intelligent Nano-Bio Materials (CINBM) at Ewha Womans University.

Timothy P. Lodge is an American polymer scientist.

<span class="mw-page-title-main">Smart inorganic polymer</span>

Smart inorganic polymers (SIPs) are hybrid or fully inorganic polymers with tunable (smart) properties such as stimuli responsive physical properties (shape, conductivity, rheology, bioactivity, self-repair, sensing etc.). While organic polymers are often petrol-based, the backbones of SIPs are made from elements other than carbon which can lessen the burden on scarce non-renewable resources and provide more sustainable alternatives. Common backbones utilized in SIPs include polysiloxanes, polyphosphates, and polyphosphazenes, to name a few.

Kaushal Kishore (1942–1999) was an Indian polymer chemist and head of the department of inorganic and physical Chemistry at the Indian Institute of Science (IISc). He was known for his researches on thermochemistry and combustion of polymers. and was an elected fellow of the National Academy of Sciences, India, Indian National Science Academy, and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1988, for his contributions to chemical sciences.

<span class="mw-page-title-main">Subramaniam Ramakrishnan</span> Indian polymer chemist, professor and designer

Subramaniam Ramakrishnan is an Indian polymer chemist, a professor at the Department of Inorganic and Physical Chemistry http://ipc.iisc.ac.in/~rk/ and the designer at th3 Macromolecular Design and Synthesis Group of the Indian Institute of Science. He is known for his studies on design and synthesis of controlled polymer structures and is an elected fellow of the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 2005, for his contributions to chemical sciences.

References

  1. Harry R. Allcock published articles about polymer chemistry, 1962-2004 Penn State University Libraries. Retrieved August 18, 2016.
  2. Harry R. Allcock's faculty page at Penn State. Retrieved June 29, 2009.