Hematology analyzer

Last updated

Hematology analyzers (also spelled haematology analysers in British English) are used to count and identify blood cells at high speed with accuracy. [1] [2] [3] During the 1950s, laboratory technicians counted each individual blood cell underneath a microscope. Tedious and inconsistent, this was replaced with the first, very basic hematology analyzer, engineered by Wallace H. Coulter. The early hematology analyzers relied on Coulter's principle (see Coulter counter). However, they have evolved to encompass numerous techniques. [4]

Contents

Uses

Hematology analyzers are used to conduct a complete blood count (CBC), which is usually the first test requested by physicians to determine a patient's general health status. [5] A complete blood count includes red blood cell (RBC), white blood cell (WBC), hemoglobin, and platelet counts, as well as hematocrit levels. Other analyses include: [ citation needed ]

Techniques

Types

3-part differential cell counter

Schematic diagram of 3-part analyzer. SchematicDiagramofHematologyAnalyzer2019.jpg
Schematic diagram of 3-part analyzer.

A 3-part differential cell counter uses Coulter's principle to find the size and volume of the cell. The sample is lysed and dissolved into an electrolyte solution in a container, which also holds a smaller container. The smaller container has two pumps running to and from its solution, one creating a vacuum and the other replacing the lost solution. The smaller container has a small hole (an orifice) near the bottom of the container. Coulter's principle is applied through the use of two electrodes. One electrode (the internal electrode) is within the smaller container, and the other (the external electrode) is outside of the smaller container but within the electrolyte/sample solution. As the vacuum draws the sample cells through the orifice, the cell momentarily causes electrical resistance to the current as it passes through the orifice. This resistance is recorded, measured, amplified, and processed which can then be interpreted by the computer into a histogram. The 3-part analyzer is able to differentiate between three types of white blood cells (WBCs): neutrophils, lymphocytes, and monocytes. [7]

5-part differential cell counter

This type of hematology analyzer utilizes both Coulter's principle and flow cytometry to determine the granularity, diameter, and inner complexity of the cells. Using hydrodynamic focusing, the cells are sent through an aperture one cell at a time. During this, a laser is directed at them, and the scattered light is measured at multiple angles. The absorbance is also recorded. The cell can be identified based on the intensity of the scattered light and the level of absorbance. [8] A 5-part cell counter can differentiate all WBC types (neutrophils, lymphocytes, basophils, eosinophils, and monocytes). 5-part analyzers are more expensive than 3-part analyzers, but provide more in-depth information about the sample. Specific jobs, such as allergy testing, require 5-part differential analysis. However, most medical tasks can be completed with the 3-part analyzer.[ citation needed ]

Components

The hematology analyzer is broken down into five key components: [9]

  1. Power source
  2. Control unit
  3. Collecting system
  4. Data storage
  5. Processing system

Related Research Articles

<span class="mw-page-title-main">Blood cell</span> Cell produced by hematopoiesis

A blood cell, also called a hematopoietic cell, hemocyte, or hematocyte, is a cell produced through hematopoiesis and found mainly in the blood. Major types of blood cells include red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). Together, these three kinds of blood cells add up to a total 45% of the blood tissue by volume, with the remaining 55% of the volume composed of plasma, the liquid component of blood.

<span class="mw-page-title-main">Complete blood count</span> Routine laboratory test of blood cells

A complete blood count (CBC), also known as a full blood count (FBC), is a set of medical laboratory tests that provide information about the cells in a person's blood. The CBC indicates the counts of white blood cells, red blood cells and platelets, the concentration of hemoglobin, and the hematocrit. The red blood cell indices, which indicate the average size and hemoglobin content of red blood cells, are also reported, and a white blood cell differential, which counts the different types of white blood cells, may be included.

<span class="mw-page-title-main">Blood test</span> Laboratory analysis performed on a blood sample

A blood test is a laboratory analysis performed on a blood sample that is usually extracted from a vein in the arm using a hypodermic needle, or via fingerprick. Multiple tests for specific blood components, such as a glucose test or a cholesterol test, are often grouped together into one test panel called a blood panel or blood work. Blood tests are often used in health care to determine physiological and biochemical states, such as disease, mineral content, pharmaceutical drug effectiveness, and organ function. Typical clinical blood panels include a basic metabolic panel or a complete blood count. Blood tests are also used in drug tests to detect drug abuse.

<span class="mw-page-title-main">Automated analyser</span>

An automated analyser is a medical laboratory instrument designed to measure various substances and other characteristics in a number of biological samples quickly, with minimal human assistance. These measured properties of blood and other fluids may be useful in the diagnosis of disease.

<span class="mw-page-title-main">Hematocrit</span> Volume percentage of red blood cells in blood

The hematocrit, also known by several other names, is the volume percentage (vol%) of red blood cells (RBCs) in blood, measured as part of a blood test. The measurement depends on the number and size of red blood cells. It is normally 40.7–50.3% for males and 36.1–44.3% for females. It is a part of a person's complete blood count results, along with hemoglobin concentration, white blood cell count and platelet count.

<span class="mw-page-title-main">Blood smear</span> Stained blood on microscope slide

A blood smear, peripheral blood smear or blood film is a thin layer of blood smeared on a glass microscope slide and then stained in such a way as to allow the various blood cells to be examined microscopically. Blood smears are examined in the investigation of hematological (blood) disorders and are routinely employed to look for blood parasites, such as those of malaria and filariasis.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

<span class="mw-page-title-main">Mean corpuscular hemoglobin concentration</span> Measure of hemoglobin concentration in red blood cells

The mean corpuscular hemoglobin concentration (MCHC) is a measure of the concentration of hemoglobin in a given volume of packed red blood cell.

<span class="mw-page-title-main">Mean corpuscular hemoglobin</span> Average mass of hemoglobin (Hb) per red blood cell (RBC)

The mean corpuscular hemoglobin, or "mean cell hemoglobin" (MCH), is the average mass of hemoglobin (Hb) per red blood cell (RBC) in a sample of blood. It is reported as part of a standard complete blood count. MCH value is diminished in hypochromic anemias. RBCs are either normochromic or hypochromic. They are never "hyperchromic". If more than the normal amount of hemoglobin is made, the cells get larger—they do not become darker.

<span class="mw-page-title-main">Megaloblastic anemia</span> Medical condition

Megaloblastic anemia is a type of macrocytic anemia. An anemia is a red blood cell defect that can lead to an undersupply of oxygen. Megaloblastic anemia results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis. Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias. The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically vitamin B12 deficiency or folate deficiency. Loss of micronutrients may also be a cause.

<span class="mw-page-title-main">Coulter counter</span> Device to count and size particles

A Coulter counter is an apparatus for counting and sizing particles suspended in electrolytes. The Coulter counter is the commercial term for the technique known as resistive pulse sensing or electrical zone sensing. The apparatus is based on the Coulter principle named after its inventor, Wallace H. Coulter.

<span class="mw-page-title-main">Kleihauer–Betke test</span> Blood test used to measure the amount of fetal hemoglobin

The Kleihauer–Betke ("KB") test, Kleihauer–Betke ("KB") stain, Kleihauer test or acid elution test is a blood test used to measure the amount of fetal hemoglobin transferred from a fetus to a mother's bloodstream. It is usually performed on Rh-negative mothers to determine the required dose of Rho(D) immune globulin (RhIg) to inhibit formation of Rh antibodies in the mother and prevent Rh disease in future Rh-positive children. It is named after Enno Kleihauer and Klaus Betke who described it in 1957.

Anemia of prematurity (AOP) refers to a form of anemia affecting preterm infants with decreased hematocrit. AOP is a normochromic, normocytic hypoproliferative anemia. The primary mechanism of AOP is a decrease in erythropoietin (EPO), a red blood cell growth factor.

Normocytic anemia is a type of anemia and is a common issue that occurs for men and women typically over 85 years old. Its prevalence increases with age, reaching 44 percent in men older than 85 years. The most common type of normocytic anemia is anemia of chronic disease.

Iron tests are groups of clinical chemistry laboratory blood tests that are used to evaluate body iron stores or the iron level in blood serum.

<span class="mw-page-title-main">Cytometry</span> Measurement of number and characteristics of cells

Cytometry is the measurement of number and characteristics of cells. Variables that can be measured by cytometric methods include cell size, cell count, cell morphology, cell cycle phase, DNA content, and the existence or absence of specific proteins on the cell surface or in the cytoplasm. Cytometry is used to characterize and count blood cells in common blood tests such as the complete blood count. In a similar fashion, cytometry is also used in cell biology research and in medical diagnostics to characterize cells in a wide range of applications associated with diseases such as cancer and AIDS.

<span class="mw-page-title-main">Red cell agglutination</span> Clumping of red blood cells

In hematology, red cell agglutination or autoagglutination is a phenomenon in which red blood cells clump together, forming aggregates. It is caused by the surface of the red cells being coated with antibodies. This often occurs in cold agglutinin disease, a type of autoimmune hemolytic anemia in which people produce antibodies that bind to their red blood cells at cold temperatures and destroy them. People may develop cold agglutinins from lymphoproliferative disorders, from infection with Mycoplasma pneumoniae or Epstein–Barr virus, or idiopathically. Red cell agglutination can also occur in paroxysmal nocturnal hemoglobinuria and warm autoimmune hemolytic anemia. In cases of red cell agglutination, the direct antiglobulin test can be used to demonstrate the presence of antibodies bound to the red cells.

The International Society for Laboratory Hematology (ISLH) is a non-profit organisation founded in 1992. Its purpose is to provide a forum for dissemination of new ideas and information related to the field of laboratory hematology.

<span class="mw-page-title-main">White blood cell differential</span> Blood test

A white blood cell differential is a medical laboratory test that provides information about the types and amounts of white blood cells in a person's blood. The test, which is usually ordered as part of a complete blood count (CBC), measures the amounts of the five normal white blood cell types – neutrophils, lymphocytes, monocytes, eosinophils and basophils – as well as abnormal cell types if they are present. These results are reported as percentages and absolute values, and compared against reference ranges to determine whether the values are normal, low, or high. Changes in the amounts of white blood cells can aid in the diagnosis of many health conditions, including viral, bacterial, and parasitic infections and blood disorders such as leukemia.

<span class="mw-page-title-main">Celloscope automated cell counter</span> Cell counting and analysis device

Celloscope automated cell counter was developed in the 50s for enumeration of erythrocytes, leukocytes, and thrombocytes in blood samples. Together with the Coulter counter, the Celloscope analyzer can be considered one of the predecessors of today’s automated hematology analyzers, as the principle of the electrical impedance method is still utilized in cell counters installed in clinical laboratories around the world.

References

  1. Chhabra, Gaurav (2018). "Automated hematology analyzers: Recent trends and applications". Journal of Laboratory Physicians. 10 (1): 15–16. doi: 10.4103/JLP.JLP_124_17 . PMC   5784285 . PMID   29403197.
  2. Wenhao Zhang; Xudong Ma; Fang Fang; Xin Xu; Ziquan Dong (October 2016). "Development of management software for new Automatic Hematology analyzer based on PC/Windows". IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. New York City, U.S.: Institute of Electrical and Electronics Engineers. pp. 96–101. doi:10.1109/IECON.2016.7794038. ISBN   978-1-5090-3474-1. S2CID   3525954.
  3. Palm, Lisa; Stephens, Laura; Bengtsson, Han-Inge; Broome, H. Elizabeth (2 December 2016). "Minimal Hematology Analyzer Plus Blood Smear Digital Imaging/ Analysis Provides Better Clinical Hematology Results Than a Complex Hematology Analyzer Alone" . Blood . 128 (22): 4731. doi:10.1182/blood.V128.22.4731.4731. Archived from the original on 16 September 2019. Retrieved 2 June 2019.
  4. Sullivan, Ellen (May 2006). "Hematology Analyzer: From Workhorse to Thoroughbred". Laboratory Medicine. 37 (5): 273–278. doi: 10.1309/TMQ6T4CBCG408141 .
  5. "Complete blood count differential interpretation – 3-part or 5-part?". Archived from the original on 27 November 2021. Retrieved 6 March 2022.
  6. "Hematology Analyzers". LabCompare. Compare Networks. Archived from the original on 5 May 2019. Retrieved 5 May 2019.
  7. Dumas, Tim. "5-Part or 3-Part: What's the Difference?". Repertoire Magazine. Archived from the original on 13 February 2017. Retrieved 7 May 2019.
  8. Ryan, Robinson. "What is flow cytometry (FACS analysis)?". Antibodies Online. Archived from the original on 6 May 2019. Retrieved 6 May 2019.
  9. Kalstein (2023) What are the main components of laboratory hematology analyzers?, Kalstein.us. Available at: https://kalstein.us/blog/2023/02/03/what-are-the-main-components-of-laboratory-hematology-analyzers/ (Accessed: 09 May 2023).