Coulter counter

Last updated
Coulter principle -- the transient current drop is proportional to the particle volume Particle Transit Channel.gif
Coulter principle — the transient current drop is proportional to the particle volume
The tip of the Coulter counter in a buffer solution, counting cells in solution. Coultercounter.jpg
The tip of the Coulter counter in a buffer solution, counting cells in solution.

A Coulter counter [1] [2] is an apparatus for counting and sizing particles suspended in electrolytes. The Coulter counter is the commercial term for the technique known as resistive pulse sensing or electrical zone sensing. The apparatus is based on the Coulter principle named after its inventor, Wallace H. Coulter.

Contents

A typical Coulter counter has one or more microchannels that separate two chambers containing electrolyte solutions. As fluid that contains particles or cells is drawn through the microchannels, each particle causes a brief change to the electrical resistance of the liquid. The counter detects these changes in the electrical resistance.

Coulter principle

The Coulter principle states that particles pulled through an orifice, concurrent with an electric current, produce a change in impedance proportional to the volume of the particle traversing the orifice. This pulse in impedance originates from the displacement of electrolyte caused by the particle.

The Coulter principle relies on the fact that particles moving in an electric field cause measurable disturbances in that field. The magnitudes of these disturbances are proportional to the size of the particles in the field. Coulter identified several requirements necessary for practical application of this phenomenon:

If multiple particles pass through the constriction simultaneously, their impedance profiles will overlap, resulting in an artifact known as coincidence. The apparatus cannot differentiate between one large particle and multiple small overlapping particles, causing anomalies in the resulting data.

A variety of experimental devices have been designed based on the Coulter principle. A few of these devices have been commercialized, with the most well-known applications being in the medical industry, particularly in hematology to count and size the various cells that comprise whole blood. All implementations of the Coulter principle have compromises between sensitivity, noise shielding, solvent compatibility, speed of measurement, sample volume, dynamic range, and reliability of device manufacture.

Development

Coulter patented several different implementations of the Coulter principle. Image taken from US Patent No. 2,656,508. Coulter geometries.png
Coulter patented several different implementations of the Coulter principle. Image taken from US Patent No. 2,656,508.

Wallace H. Coulter discovered the Coulter principle in the late 1940s, though a patent was not awarded until October 20, 1953. Coulter was influenced by the atomic bombs dropped on Hiroshima and Nagasaki, which motivated him to improve and streamline complete blood counting for use in large scale screening, as would be necessary in the event of a nuclear war. [3] Partial funding of the project came from a grant award from the Office of Naval Research. [4] [5]

Coulter was awarded US Patent No. 2,656,508, Means for Counting Particles Suspended in a Fluid. This Coulter counter is an analytical instrument which employs the Coulter principle for a specific task, most commonly counting cells. The most commercially successful application of the Coulter principle is in hematology, where it is used to obtain information about patients' blood cells. Coulter counters can also be used in the processing and manufacturing of paint, ceramics, glass, metals, and food. They are also routinely employed for quality control.

The first commercial Coulter counter Model A COULTER COUNTER from Advertisement.jpg
The first commercial Coulter counter

Cells, being poorly conductive particles, alter the effective cross-section of the conductive microchannel. If these particles are less conductive than the surrounding liquid medium, the electrical resistance across the channel increases, causing the electric current passing across the channel to briefly decrease. By monitoring such pulses in electric current, the number of particles for a given volume of fluid can be counted. The size of the electric current change is related to the size of the particle, enabling a particle size distribution to be measured, which can be correlated to mobility, surface charge, and concentration of the particles.

The amount and quality of data obtained varies greatly as a function of the signal processing circuitry in the Coulter counter. Amplifiers with lower noise thresholds and greater dynamic range can increase the sensitivity of the system, and digital pulse height analyzers with variable bin widths provide much higher resolution data as compared to analog analyzers with fixed bins. Combining a Coulter counter with a digital computer allows capture and analysis of many electrical pulse characteristics, while analog counters typically store a limited amount of information about each pulse.

As electric current detectors became more sensitive and less expensive, the Coulter counter became a common hospital laboratory instrument for quick and accurate analysis of complete blood counts (CBC). The CBC is used to determine the number or proportion of white and red blood cells in the body. Previously, this procedure involved preparing a peripheral blood smear and manually counting each type of cell under a microscope, a process that typically required a half-hour.

A Coulter counter played an important role in the development of the first cell sorter, and was involved in the early development of flow cytometry. Some flow cytometers continue to utilize the Coulter principle to provide information about cell size and count.

Formats

While a Coulter counter can be designed in a variety of ways, there are two chief configurations that have become the most commercially relevant: an aperture format and a flow cell format.

The aperture format is the most-used configuration in commercial Coulter counters, and is suited to testing samples for quality control. In this setup, a small aperture (hole) of specific size is created in a material such as a jewel disk (made of the same material as jewel bearings in watches). [4] This disk is then embedded in the wall of a glass tube, which is then referred to as an aperture tube. The aperture tube is placed in a conducting liquid such that the aperture is completely submerged, and a pump at the top of the tube draws liquid through the aperture. Electrical current is passed through electrodes on either side of the aperture tube; because glass is an electrical insulator, all of this current flows through the aperture. After recording baseline data, the sample to be analyzed is slowly added to the conducting liquid and drawn through the aperture. Variations in conductivity, caused as sample particles pass through the aperture, are recorded as electrical pulses and analyzed to determine the characteristics of the particles and the sample as a whole.

The flow cell format is most commonly implemented in hematology instruments, and some flow cytometers. In this format, electrodes are embedded at either end of a flow channel and the electric field is applied across the channel. This arrangement allows for continuous sample analysis and can be combined with other instrumentation (when equipped with a sheath flow to keep particles centered in middle of the flow channel). This can permit additional measurements to be performed simultaneously, such as probing the particle with a laser. The major disadvantages of the flow cell format are that it is much more expensive to manufacture and is typically fixed to a single channel width, whereas the aperture format offers a wide variety of aperture sizes.

Microfluidic approaches have been used to apply the Coulter principle to lab-on-a-chip particle detection. These techniques allow much smaller pores (holes) to be fabricated than can easily be achieved using in the aperture format. These approaches, known by the generic phrase microfluidic resistive pulse sensing, have allowed the extension of the Coulter principle to the deep sub-micron range, allowing, for example, the direct detection of virus particles in fluid. [6] [7] [8]

Experimental considerations

There are a number of common considerations in creating a test methodology with Coulter counters.

Coincidence

Anomalous electrical pulses can be generated if multiple particles enter the aperture simultaneously. This situation is known as coincidence. This occurs because there is no way to ensure that a single large pulse is the result of a single large particle or multiple small particles entering the aperture at once. To prevent this situation, samples must be fairly dilute.

Particle path

The shape of the generated electrical pulse varies with the particle's path through the aperture. Signal artifacts can occur if the electric field density varies across the diameter of the aperture. This variance is a result of both the physical constriction of the electric field and also the fact that the liquid velocity varies as a function of radial location in the aperture. In the flow cell format, this effect is minimized since sheath flow ensures each particle travels an almost identical path through the flow cell. In the aperture format, signal processing algorithms can be used to correct for artifacts resulting from particle path.

Conductive particles

Conductive particles are a common concern but rarely affect the results of an experiment. This is because the conductivity difference between most conductive materials and ions in liquid (referred to as the discharge potential) is so great that most conductive materials act as insulators in a Coulter counter. The voltage necessary to break down this potential barrier is referred to as the breakdown voltage. For those highly conductive materials that present a problem, the voltage used during a Coulter experiment can be reduced below the breakdown potential (which can be determined empirically).

Porous particles

The Coulter principle measures the volume of an object, since the disturbance in the electric field is proportional to the volume of electrolyte displaced from the aperture. This leads to some confusion amongst those who are used to optical measurements from microscopes or other systems that only view two dimensions and also show the boundaries of an object. The Coulter principle, on the other hand, measures three dimensions and the volume displaced by an object.

Direct current and alternating current

The Coulter counter as invented by Wallace Coulter applies a direct current (DC) in order to count particles (cells), and produces electrical pulses of amplitude dependent on the size of cells. The cells can be modelled as electrical insulators surrounded by a conductive liquid which block a portion of the electrical path thus increasing the measured resistance momentarily. This is the most common measuring system using the Coulter principle.

Subsequent developments were able to extend the information obtained by using alternating current (AC) in order to probe the complex electrical impedance of the cells rather their simply counting their number. [9] The cell may then be approximately modelled as an insulating cell membrane surrounding the cell's cytoplasm, which is conductive. The thinness of the cell membrane creates an electrical capacitance between the cytoplasm and the electrolyte surrounding the cell. The electrical impedance may then be measured at different AC frequencies. At low frequencies (well below 1  MHz) the impedance is similar to the DC resistance. However, higher frequencies in the MHz range can be used to probe the thickness of the cell membrane (which determines its capacitance). At much higher frequencies (well above 10 MHz) the impedance of the membrane capacitance drops to the point where the larger contribution to the measured impedance is from the cytoplasm itself (the membrane is essentially "shorted out"). Thus, by using different frequencies, the apparatus can become sensitive to the internal structure and composition of the cells.

Applications

Coulter counter manufactured by Coulter Electronics Ltd., England (1960) Coulter-counter hg.jpg
Coulter counter manufactured by Coulter Electronics Ltd., England (1960)

Hematology

The most successful and important application of the Coulter counter is in the characterization of human blood cells. The technique has been used to diagnose a variety of diseases and is the standard method for obtaining red blood cell counts (RBCs) and white blood cell counts (WBCs) as well as several other common parameters. When combined with other technologies such as fluorescence tagging and light scattering, the Coulter principle can help produce a detailed profile of a patient's blood cells.

Cell count and size

In addition to clinical counting of blood cells (cell diameters usually 6–10 micrometers), the Coulter counter has established itself as the most reliable laboratory method for counting a wide variety of cells, ranging from bacteria (<1 micrometer in size), fat cells (about 400 micrometers), stem cell embryoid bodies (about 900 micrometers), and plant cell aggregates (>1200 micrometers).

Particle characterization

Coulter counters have been used in a wide variety of fields for their ability to individually measure particles, independent of optical properties, sensitivity, and dependability. The principle has been adapted to the nanoscale to produce nanoparticle characterization techniques known as microfluidic resistive pulse sensing as well as one commercial venture which sells a technique it terms tunable resistive pulse sensing (TRPS). TRPS enables high-fidelity analysis of a diverse set of nanoparticles, including functionalized drug delivery nanoparticles, virus-like particles (VLPs), liposomes, exosomes, polymeric nanoparticles, and microbubbles.

Coulter counter Model ZK Coulter counter.jpg
Coulter counter Model ZK

See also

Related Research Articles

<span class="mw-page-title-main">Electrophysiology</span> Study of the electrical properties of biological cells and tissues.

Electrophysiology is the branch of physiology that studies the electrical properties of biological cells and tissues. It involves measurements of voltage changes or electric current or manipulations on a wide variety of scales from single ion channel proteins to whole organs like the heart. In neuroscience, it includes measurements of the electrical activity of neurons, and, in particular, action potential activity. Recordings of large-scale electric signals from the nervous system, such as electroencephalography, may also be referred to as electrophysiological recordings. They are useful for electrodiagnosis and monitoring.

<span class="mw-page-title-main">Complete blood count</span> Routine laboratory test of blood cells

A complete blood count (CBC), also known as a full blood count (FBC), is a set of medical laboratory tests that provide information about the cells in a person's blood. The CBC indicates the counts of white blood cells, red blood cells and platelets, the concentration of hemoglobin, and the hematocrit. The red blood cell indices, which indicate the average size and hemoglobin content of red blood cells, are also reported, and a white blood cell differential, which counts the different types of white blood cells, may be included.

<span class="mw-page-title-main">Automated analyser</span>

An automated analyser is a medical laboratory instrument designed to measure various substances and other characteristics in a number of biological samples quickly, with minimal human assistance. These measured properties of blood and other fluids may be useful in the diagnosis of disease.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

<span class="mw-page-title-main">Flow cytometry</span> Lab technique in biology and chemistry

Flow cytometry (FC) is a technique used to detect and measure physical and chemical characteristics of a population of cells or particles.

<span class="mw-page-title-main">Proton-exchange membrane fuel cell</span> Power generation technology

Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.

<span class="mw-page-title-main">Zeta potential</span> Electrokinetic potential in colloidal dispersions

Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.

<span class="mw-page-title-main">Dielectrophoresis</span> Particle motion in a non-uniform electric field due to dipole-field interactions

Dielectrophoresis (DEP) is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. This force does not require the particle to be charged. All particles exhibit dielectrophoretic activity in the presence of electric fields. However, the strength of the force depends strongly on the medium and particles' electrical properties, on the particles' shape and size, as well as on the frequency of the electric field. Consequently, fields of a particular frequency can manipulate particles with great selectivity. This has allowed, for example, the separation of cells or the orientation and manipulation of nanoparticles and nanowires. Furthermore, a study of the change in DEP force as a function of frequency can allow the electrical properties of the particle to be elucidated.

A particle counter is used for monitoring and diagnosing particle contamination within specific clean media, including air, water and chemicals. Particle counters are used in a variety of applications in support of clean manufacturing practices, industries include: electronic components and assemblies, pharmaceutical drug products and medical devices, and industrial technologies such as oil and gas.

Microparticles are particles between 0.1 and 100 μm in size. Commercially available microparticles are available in a wide variety of materials, including ceramics, glass, polymers, and metals. Microparticles encountered in daily life include pollen, sand, dust, flour, and powdered sugar.

<span class="mw-page-title-main">Field flow fractionation</span> Separation technique to characterize the size of colloidal particles

Field-flow fractionation, abbreviated FFF, is a separation technique invented by J. Calvin Giddings. The technique is based on separation of colloidal or high molecular weight substances in liquid solutions, flowing through the separation platform, which does not have a stationary phase. It is similar to liquid chromatography, as it works on dilute solutions or suspensions of the solute, carried by a flowing eluent. Separation is achieved by applying a field or cross-flow, perpendicular to the direction of transport of the sample, which is pumped through a long and narrow laminar channel. The field exerts a force on the sample components, concentrating them towards one of the channel walls, which is called accumulation wall. The force interacts with a property of the sample, thereby the separation occurs, in other words, the components show differing "mobilities" under the force exerted by the crossing field. As an example, for the hydraulic, or cross-flow FFF method, the property driving separation is the translational diffusion coefficient or the hydrodynamic size. For a thermal field, it is the ratio of the thermal and the translational diffusion coefficient.

CASY technology is an electric field multi-channel cell counting system. It was first marketed by Schärfe System GmbH in 1987 under the name CASY1. The first systems were sold with an ATARI computer and a rectangular chassis. In the 1990s the ATARI computer got replaced by a common PC and the chassis changed into cylinders. In 2006, Schärfe System was acquired by Innovatis AG, a company focused on cell culture analysis. CASY utilizes the techniques of electric current exclusion and pulse area analysis, the cells can be analyzed and counted in an efficient and precise manner. This technology can be applied for cell counting, cell culture analysis at a certain time interval, or even a period of time.

<span class="mw-page-title-main">Cytometry</span> Measurement of number and characteristics of cells

Cytometry is the measurement of number and characteristics of cells. Variables that can be measured by cytometric methods include cell size, cell count, cell morphology, cell cycle phase, DNA content, and the existence or absence of specific proteins on the cell surface or in the cytoplasm. Cytometry is used to characterize and count blood cells in common blood tests such as the complete blood count. In a similar fashion, cytometry is also used in cell biology research and in medical diagnostics to characterize cells in a wide range of applications associated with diseases such as cancer and AIDS.

Cell counting is any of various methods for the counting or similar quantification of cells in the life sciences, including medical diagnosis and treatment. It is an important subset of cytometry, with applications in research and clinical practice. For example, the complete blood count can help a physician to determine why a patient feels unwell and what to do to help. Cell counts within liquid media are usually expressed as a number of cells per unit of volume, thus expressing a concentration.

<span class="mw-page-title-main">Capillary electrochromatography</span> Method of separating components of a mixture via electro-osmosis

In chemical analysis, capillary electrochromatography (CEC) is a chromatographic technique in which the mobile phase is driven through the chromatographic bed by electro-osmosis. Capillary electrochromatography is a combination of two analytical techniques, high-performance liquid chromatography and capillary electrophoresis. Capillary electrophoresis aims to separate analytes on the basis of their mass-to-charge ratio by passing a high voltage across ends of a capillary tube, which is filled with the analyte. High-performance liquid chromatography separates analytes by passing them, under high pressure, through a column filled with stationary phase. The interactions between the analytes and the stationary phase and mobile phase lead to the separation of the analytes. In capillary electrochromatography capillaries, packed with HPLC stationary phase, are subjected to a high voltage. Separation is achieved by electrophoretic migration of solutes and differential partitioning.

Resistive pulse sensing (RPS) is the generic, non-commercial term given for the well-developed technology used to detect, and measure the size of, individual particles in fluid. First invented by Wallace H. Coulter in 1953, the RPS technique is the basic principle behind the Coulter Principle, which is a trademark term. Resistive pulse sensing is also known as the electrical zone sensing technique, reflecting its fundamentally electrical nature, which distinguishes it from other particle sizing technologies such as the optically-based dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). An international standard has been developed for the use of the resistive pulse sensing technique by the International Organization for Standardization.

Hematology analyzers are used to count and identify blood cells at high speed with accuracy. During the 1950s, laboratory technicians counted each individual blood cell underneath a microscope. Tedious and inconsistent, this was replaced with the first, very basic hematology analyzer, engineered by Wallace H. Coulter. The early hematology analyzers relied on Coulter's Principle. However, they have evolved to encompass numerous techniques.

<span class="mw-page-title-main">White blood cell differential</span> Blood test

A white blood cell differential is a medical laboratory test that provides information about the types and amounts of white blood cells in a person's blood. The test, which is usually ordered as part of a complete blood count (CBC), measures the amounts of the five normal white blood cell types – neutrophils, lymphocytes, monocytes, eosinophils and basophils – as well as abnormal cell types if they are present. These results are reported as percentages and absolute values, and compared against reference ranges to determine whether the values are normal, low, or high. Changes in the amounts of white blood cells can aid in the diagnosis of many health conditions, including viral, bacterial, and parasitic infections and blood disorders such as leukemia.

Single-Entity Electrochemistry (SEE) refers to the electroanalysis of an individual unit of interest. A unique feature of SEE is that it unifies multiple different branches of electrochemistry. Single-Entity Electrochemistry pushes the bounds of the field as it can measure entities on a scale of 100 microns to angstroms. Single-Entity Electrochemistry is important because it gives the ability to view how a single molecule, or cell, or "thing" affects the bulk response, and thus the chemistry that might have gone unknown otherwise. The ability to monitor the movement of one electron or ion from one unit to another is valuable, as many vital reactions and mechanisms undergo this process. Electrochemistry is well suited for this measurement due to its incredible sensitivity. Single-Entity Electrochemistry can be used to investigate nanoparticles, wires, vesicles, nanobubbles, nanotubes, cells, and viruses, and other small molecules and ions. Single-entity electrochemistry has been successfully used to determine the size distribution of particles as well as the number of particles present inside a vesicle or other similar structures

<span class="mw-page-title-main">Celloscope automated cell counter</span> Cell counting and analysis device

Celloscope automated cell counter was developed in the 50s for enumeration of erythrocytes, leukocytes, and thrombocytes in blood samples. Together with the Coulter counter, the Celloscope analyzer can be considered one of the predecessors of today’s automated hematology analyzers, as the principle of the electrical impedance method is still utilized in cell counters installed in clinical laboratories around the world.

References

  1. W. R. Hogg, W. Coulter; Apparatus and method for measuring a dividing particle size of a particulate system; United States Patent 3557352
  2. U.S. patent 7,397,232 Coulter counter
  3. Graham, Marshall (2020-01-01). "THE COULTER PRINCIPLE: FOR THE GOOD OF HUMANKIND". Theses and Dissertations--History. doi:10.13023/etd.2020.495.
  4. 1 2 Marshall Don. Graham (2003). "The Coulter Principle: Foundation of an Industry". Journal of Laboratory Automation . 8 (6): 72–81. doi: 10.1016/S1535-5535-03-00023-6 .
  5. Cytometry volume 10, a DVD series produced by the Purdue University Cytometry Labs http://www.cyto.purdue.edu/cdroms/cyto10a/seminalcontributions/coulter.html
  6. J. J. Kasianowicz et al.. "Characterization of individual polynucleotide molecules using a membrane channel", P. Natl. Acad. Sci. USA 93,13770–13773 (1996)
  7. O. Saleh and L. L. Sohn, "An artificial nanopore for molecular sensing", Nano Lett. 3, 37–38 (2003)
  8. J.-L. Fraikin, T. Teesalu, C. M. McKenney, E. Ruoslahti and A. N. Cleland, "A high-throughput label-free nanoparticle analyzer," Nature Nanotechnology 6, 308–313 (2011)
  9. Youchun Xu; XinwuXie; Yong Duan; Lei Wang; Zhen Cheng; Jing Cheng (15 March 2016). "A review of impedance measurements of whole cells". Biosensors and Bioelectronics. 77: 824–836. doi:10.1016/j.bios.2015.10.027. PMID   26513290.