Hemithioacetal

Last updated
Hemithioacetal functional group Hemithioacetal.png
Hemithioacetal functional group

In organic chemistry, hemithioacetals (or thiohemiacetals) are organosulfur compounds with the general formula R−CH(−OH)−SR’. They are the sulfur analogues of the acetals, R−CH(−OH)−OR’, with an oxygen atom replaced by sulfur (as implied by the thio- prefix). Because they consist of four differing substituents on a single carbon, hemithioacetals are chiral. A related family of compounds are the dithiohemiacetals, with the formula R−CH(−SH)−SR’. [1] Although they can be important intermediates, hemithioacetals are usually not isolated, since they exist in equilibrium with thiols (−SH) and aldehydes (−CH=O).

Contents

Formation and structure

Hemithioacetals are formed by the reaction of a thiol (R−SH) and an aldehyde (R−CH=O):

Hemithioacetals usually arise via acid catalysis. They typically are intermediates in the formation of dithioacetals (R−CH(S−R’)2):

Isolable hemithioacetal

2-Hydroxytetrahydrothiophene is a rare example of a hemithioacetal that can be isolated. C4H7(OH)S.png
2-Hydroxytetrahydrothiophene is a rare example of a hemithioacetal that can be isolated.

Hemithioacetals ordinarily readily dissociate into thiol and aldehyde, however, some have been isolated. In general, these isolable hemithioacetals are cyclic, which disfavors dissociation, and can often be further stabilized by the presence of acid. [2] An important class are S-glycosides, such as octylthioglucoside, which are formed by a reaction between thiols and sugars. Other examples include 2-hydroxytetrahydrothiophene [3] and the anti-HIV drug Lamivudine. [4] Another class of isolable hemithioacetals are derived from carbonyl groups that form stable hydrates. For example, thiols react with hexafluoroacetone trihydrate to give hemithioacetals, which can be isolated. [5]

Hemithioacetals in nature

Glyoxalase I, which is part of the glyoxalase system present in the cytosol, catalyzes the conversion of α-oxoaldehyde (RC(O)CHO) and the thiol glutathione (abbreviated GSH) to S-2-hydroxyacylglutathione derivatives [RCH(OH)CO-SG]. The catalytic mechanism involves an intermediate hemithioacetal adduct [RCOCH(OH)-SG]. The spontaneous reaction forms methylglyoxal-glutathione hemithioacetal and human glyoxalse I. [6]

A hemithioacetal is also invoked in the mechanism of prenylcysteine lyase. In catalytic mechanism, S-farnesylcysteine is oxidized by a flavin to a thiocarbenium ion. The thiocarbenium ion hydrolyzes to form the hemithioacetal:

Prenylcysteine lyase mechanism.png

After formation, the hemithioacetal breaks into hydrogen peroxide, farnesal, and cysteine. [7]

Related Research Articles

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst. Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process regenerating the catalyst.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are common and play important roles in the technology and biological spheres.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Active site</span> Active region of an enzyme

In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate and residues that catalyse a reaction of that substrate. Although the active site occupies only ~10–20% of the volume of an enzyme, it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether with a three-atom ring. This ring approximates an equilateral triangle, which makes it strained, and hence highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Aldol reaction</span> Chemical reaction

The aldol reaction is a means of forming carbon–carbon bonds in organic chemistry. Discovered independently by the Russian chemist Alexander Borodin in 1869 and by the French chemist Charles-Adolphe Wurtz in 1872, the reaction combines two carbonyl compounds to form a new β-hydroxy carbonyl compound. These products are known as aldols, from the aldehyde + alcohol, a structural motif seen in many of the products. Aldol structural units are found in many important molecules, whether naturally occurring or synthetic. For example, the aldol reaction has been used in the large-scale production of the commodity chemical pentaerythritol and the synthesis of the heart disease drug Lipitor.

Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is called pharmacokinetics.

<span class="mw-page-title-main">Acid catalysis</span>

In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H+) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions. In these reactions, the conjugate acid of the carbonyl group is a better electrophile than the neutral carbonyl group itself. Depending on the chemical species that act as the acid or base, catalytic mechanisms can be classified as either specific catalysis and general catalysis. Many enzymes operate by general catalysis.

<span class="mw-page-title-main">Baeyer–Villiger oxidation</span>

The Baeyer–Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from a cyclic ketone, using peroxyacids or peroxides as the oxidant. The reaction is named after Adolf von Baeyer and Victor Villiger who first reported the reaction in 1899.

The Strecker amino acid synthesis, also known simply as the Strecker synthesis, is a method for the synthesis of amino acids by the reaction of an aldehyde with ammonia in the presence of potassium cyanide. The condensation reaction yields an α-aminonitrile, which is subsequently hydrolyzed to give the desired amino acid. The method is used commercially for the production of racemic methionine from methional.

In organosulfur chemistry, thioacetals are the sulfur (thio-) analogues of acetals. There are two classes: the less-common monothioacetals, with the formula R−CH(−OR')−SR", and the dithioacetals, with the formula R−CH(−SR')2 or R−CH(−SR')−SR".

<span class="mw-page-title-main">2-Mercaptoethanol</span> Chemical compound

2-Mercaptoethanol (also β-mercaptoethanol, BME, 2BME, 2-ME or β-met) is the chemical compound with the formula HOCH2CH2SH. ME or βME, as it is commonly abbreviated, is used to reduce disulfide bonds and can act as a biological antioxidant by scavenging hydroxyl radicals (amongst others). It is widely used because the hydroxyl group confers solubility in water and lowers the volatility. Due to its diminished vapor pressure, its odor, while unpleasant, is less objectionable than related thiols.

The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol. The advantages of the MPV reduction lie in its high chemoselectivity, and its use of a cheap environmentally friendly metal catalyst.

Myron Lee Bender (1924–1988) was born in St. Louis, Missouri. He obtained his B.S. (1944) and his Ph.D. (1948) from Purdue University. The latter was under the direction of Henry B. Hass. After postdoctoral research under Paul D. Barlett, and Frank H. Westheimer, he spent one year as a faculty member at the University of Connecticut. Thereafter, he was a professor of Chemistry at Illinois Institute of Technology in 1951, and then at Northwestern University in 1960. He worked primarily in the study of reaction mechanisms and the biochemistry of enzyme action. Myron L. Bender demonstrated the two-step mechanism of catalysis for serine proteases, nucleophilic catalysis in ester hydrolysis and intramolecular catalysis in water. He also showed that cyclodextrin can be used to investigate catalysis of organic reactions within the scope of host–guest chemistry. Finally, he and others reported on the synthesis of an organic compound as a model of an acylchymotrypsin intermediate.

Carbonylation refers to reactions that introduce carbon monoxide into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

<span class="mw-page-title-main">Lactoylglutathione lyase</span>

The enzyme lactoylglutathione lyase catalyzes the isomerization of hemithioacetal adducts, which are formed in a spontaneous reaction between a glutathionyl group and aldehydes such as methylglyoxal.

The glyoxalase system is a set of enzymes that carry out the detoxification of methylglyoxal and the other reactive aldehydes that are produced as a normal part of metabolism. This system has been studied in both bacteria and eukaryotes. This detoxification is accomplished by the sequential action of two thiol-dependent enzymes; firstly glyoxalase І, which catalyzes the isomerization of the spontaneously formed hemithioacetal adduct between glutathione and 2-oxoaldehydes into S-2-hydroxyacylglutathione. Secondly, glyoxalase ІІ hydrolyses these thiolesters and in the case of methylglyoxal catabolism, produces D-lactate and GSH from S-D-lactoyl-glutathione.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry. The first organogold compound discovered was gold(I) carbide Au2C2, which was first prepared in 1900.

<span class="mw-page-title-main">Selenenic acid</span>

A selenenic acid is an organoselenium compound and an oxoacid with the general formula RSeOH, where R ≠ H. It is the first member of the family of organoselenium oxoacids, which also include seleninic acids and selenonic acids, which are RSeO2H and RSeO3H, respectively. Selenenic acids derived from selenoenzymes are thought to be responsible for the antioxidant activity of these enzymes. This functional group is sometimes called SeO-selenoperoxol.

References

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " thiohemiacetals ". doi : 10.1351/goldbook.T06355
  2. Barnett, Ronald E.; Jencks, William P. (November 1969). "Diffusion-controlled and concerted base catalysis in the decomposition of hemithioacetals". Journal of the American Chemical Society. 91 (24): 6758–6765. doi:10.1021/ja01052a038.
  3. Cox, J. M.; Owen, L. N. (1967). "Cyclic hemithioacetals: analogues of thiosugars with sulphur in the ring". Journal of the Chemical Society C: Organic: 1130. doi:10.1039/J39670001130.
  4. Milton, John; Brand, Stephen; Jones, Martin F.; Rayner, Christopher M. (September 1995). "Enantioselective enzymatic synthesis of the anti-viral agent lamivudine (3TC™)". Tetrahedron Letters. 36 (38): 6961–6964. doi:10.1016/0040-4039(95)01380-Z.
  5. Field, Lamar; Sweetman, B. J.; Bellas, Michael (July 1969). "Biologically oriented organic sulfur chemistry. II. Formation of hemimercaptals or hemimercaptoles (.alpha.-hydroxy sulfides) as a means of latentiating thiols". Journal of Medicinal Chemistry. 12 (4): 624–628. doi:10.1021/jm00304a014. PMID   5793152.
  6. Thornalley, P.J. (1 December 2003). "Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation". Biochemical Society Transactions. 31 (6): 1343–1348. doi:10.1042/bst0311343. PMID   14641060.
  7. Digits, J. A.; Pyun, H.-J.; Coates, R. M.; Casey, P. J. (16 August 2002). "Stereospecificity and Kinetic Mechanism of Human Prenylcysteine Lyase, an Unusual Thioether Oxidase". Journal of Biological Chemistry. 277 (43): 41086–41093. doi: 10.1074/jbc.M208069200 . PMID   12186880.