Herbert Edward Kaufman | |
---|---|
Born | |
Nationality | American |
Alma mater | Princeton University Harvard University |
Known for | Glaucoma, protease inhibitor, virology, Corneal transplant, Excimer laser, Photorefractive keratectomy, LASIK, Eye bank, Natamycin |
Awards | Weisenfeld and Proctor awards from the Association for Research in Ophthalmology (ARVO) MAP award from the Society Ophthalmoligica Montgomery Medal from the Irish Ophthalmological Society Contents
Pockington Medal from the Royal Society of Ophthalmology Innovators award from the Association of Cataract and Refractive Surgeons |
Scientific career | |
Fields | Ophthalmology |
Institutions | NIH University of Florida Louisiana State University |
Herbert Edward Kaufman (September 28, 1931) is an American ophthalmologist who discovered idoxuridine, the first clinically useful antiviral agent; co-developed with William Bourne the clinical specular microscope to view the live corneal endothelium, co-developed timolol with Thomas Zimmerman, a new class of medications to treat glaucoma; corneal storage media for eye banks; natamycin, the first commercially available medication to treat fungal infections of the eye; co-developed with Tony Gasset the use of bandage contact lenses; and was involved in the first laser vision photorefractive keratectomy of the eye with Marguarite McDonald. [1] [2]
He began his Princeton University education at age 16, where he graduated Phi Beta Kappa and Magna Cum Laude with a degree in chemistry. This was followed by medical school at Harvard University. Kaufman Graduated in 1956 Magna Cum Laude and Alpha Omega Alpha. He received the New England Pathology Society Award for developing a new type of calcium stain for histological tissue preparation. [1] [2]
He performed his Medical Internship at Massachusetts General Hospital, and following that, he worked at the National Institutes of Health (NIH) as a clinical associate for 2 years. While at the NIH much of his research concentrated on the parasite toxoplasma. He was the first to grow toxoplasma in culture. His studies showed that slow growing isolates of toxoplasma were more resistant to treatment and if fast growing toxoplasma isolates were slowed by reducing the temperature, they also became more resistant to treatment with pyrimethamine. [3]
Toward the end of his work at the NIH, Kaufman was asked to be the first Chairman of the Department of Ophthalmology at the University of Florida, in Gainesville, Florida. Since he had not yet begun his Ophthalmology residency, the University of Florida Medical School kept the position open until he completed his three-year residency at The Massachusetts Eye and Ear Infirmary of Harvard Medical School, under the training of Claus Dohlman. During his residency, he continued research in toxoplasmosis. He was assisted at this time and throughout his career by a chemical engineer, Emily Varnell. Kaufman became interested in finding a treatment for viral infections. Although there were vaccines to prevent some viruses, there was not a treatment for active viral infections. Kaufman believed that a medication could be found that would interfere with intracellular multiplication of a Herpes virus. During his residency, he pioneered the medical use of 5-iododeoxyuridine (IDU) the first medication to ever successfully treat and cure a viral infection. [2] [4]
5-iododeoxyuridine (IDU) had been synthesized 8 years earlier by William Prusoff as an anticancer medication. Kaufman tested IDU as a possible agent to disrupt viral replication in active Herpes Simplex Virus infections of the eye. IDU was proven effective and resulted in the discovery of the first antiviral agent used in humans to treat an active viral infection. This agent was subsequently used to effectively treat Herpes Simplex keratitis, the primary cause of corneal blindness in the Western world at that time. [5] [6] Kaufman also developed the use of topical steroids in the treatment course of some corneal infections that were made worse by the host reaction to the infection. [Steroids and ISU Ref] The use of steroids reduced the damage produced by the host reaction and lessened the tissue damage that occurred as part of the infection. [7]
Yale researcher Marvin Sears, observed that timolol, a beta-adrenergic agent, had an intraocular pressure lowering effect in rabbit eyes when used to dissolve lens zonules. There was reluctance among industry to investigate this drug further in trials because of the absence of a large market. Kaufman identified timolol as a possible therapeutic agent to treat glaucoma and with Thomas Zimmerman, conduct basic science and clinical trials with timolol, at the University of Florida. This introduced an entirely new class of drugs to treat glaucoma; it was ultimately marketed by Merck, Sharp and Dohme. [4] [8]
While at the University of Florida, fungal infections of the eye were common and Kaufman sought to find an effective treatment for use on the eye. He read that a Dutch company used Prymaricin to prevent cheese from getting moldy. He designed an animal model of a fungal infection with which he and his colleague, Emanuel Newman, proved that the substance was efficacious for treating human infection. They provided Prymaricin to clinicians at no cost for a number of years. The medication ultimately received FDA approval without a clinical trial or a manufacturer. Alcon Laboratories later manufactured the drug as Natamycin. Prymaricin (natamycin) is still commonly used today. [4] [9]
With Tony Gasset, Kaufman studied therapeutic soft contact lens (SCL) use to promote corneal healing and reduce pain. They also pioneered the use SCL and collagen shields as a sustained release mechanism for medication to the eye. [10]
The specular microscope was developed with Bill Bourne, which showed that the human corneal endothelium divided little or not at all. Thus, this tissue must be protected since it could not effectively repair itself like other human tissue. This also led to the discovery that the corneal endothelium was being damaged during cataract surgery as the cataract was removed and the artificial lens was placed into the eye. [11]
Prior to the development of corneal storage media for eye banks, corneal transplant surgery generally required corneal transplant surgery to be conducted with hours of the donor's death. This was not always possible; thus, the need for a corneal storage media was born out of need because of the dearth of usable cornea transplant tissue. [4] Kaufman proposed removing the corneas from the enucleated eyes and immersing the corneas in a type of tissue culture solution, which could maintain the health of the stored corneas for days. Kaufman immersed the corneal tissue in a tissue culture solution and later Dextran to dehydrate the tissue at the suggestion of colleague, Bernie McCarey, who validated the idea in 1974. [12]
There was resistance to this new procedure but with the support of Edward Maumenee, head of ophthalmology, Johns Hopkins University, Baltimore, the new protocol was accepted by Eye Banks International. MK media was not patented so that it could be used by eye banks throughout the world, free of charge. [4]
As eye banks required more time for tissue testing and distribution across the country, Kaufman developed K-Sol corneal storage media in 1986. K-sol contained chondroitin sulfate, which was a free radical scavenger to extend the usable life of the tissue in eye bank storage for up to 14 days. [13]
(k-sol reference) K-sol was used for many years but was removed due to a manufacturing contamination by Taylor Pharmacueticals. [14] Kaufman and Richard Lindstrom, modified the k-sol formulation to make Optisol corneal eye bank storage media in 1992. Optisol remains the most commonly used eye bank preserving medium, according to Kaufman. [15]
Ultimately, the first human to undergo laser vision correction with the excimer laser was a patient with a uveal melanoma in an eye slated for enucleation who allowed Marguerite McDonald to perform an excimer laser photorefractive keratectomy (PRK). Following enucleation, they performed histologic studies. This was followed by the same work in a series of blind patients who allowed PRK to be performed despite the absence of a benefit to them to forward this technology, which led to the development of LASIK eye surgery. [4] [16] Awards: The Weisenfeld and Proctor awards from the Association for Research in Ophthalmology (ARVO), the MAP award from the Society Ophthalmoligica, The Montgomery Medal from the Irish Ophthalmological Society, The Pockington Medal from the Royal Society of Ophthalmology, 10 outstanding Men of the year by the US Chamber of Commerce, The Innovators award from the Association of Cataract and Refractive Surgeons and others.
He was the editor of Investigative Ophthalmology and Visual Science and served on the Editorial Boards of a number of journals, including the AmericanJournal of Ophthalmology. He has been president of the Association for Research in Vision and Ophthalmology, the Contact Lens Association of Ophthalmologists, and the International Society of Refractive Keratoplasty and has served two terms on the Advisory Council of the National Eye Institute. He has more than 700 publications in his bibliography, including work on herpesvirus and ocular disease, antiviral drugs, corneal surgery, and refractive surgery. [2]
Keratitis is a condition in which the eye's cornea, the clear dome on the front surface of the eye, becomes inflamed. The condition is often marked by moderate to intense pain and usually involves any of the following symptoms: pain, impaired eyesight, photophobia, red eye and a 'gritty' sensation.
Eye surgery, also known as ophthalmic surgery or ocular surgery, is surgery performed on the eye or its adnexa. Eye surgery is part of ophthalmology and is performed by an ophthalmologist or eye surgeon. The eye is a fragile organ, and requires due care before, during, and after a surgical procedure to minimize or prevent further damage. An eye surgeon is responsible for selecting the appropriate surgical procedure for the patient, and for taking the necessary safety precautions. Mentions of eye surgery can be found in several ancient texts dating back as early as 1800 BC, with cataract treatment starting in the fifth century BC. It continues to be a widely practiced class of surgery, with various techniques having been developed for treating eye problems.
Radial keratotomy (RK) is a refractive surgical procedure to correct myopia (nearsightedness). It was developed in 1974 by Svyatoslav Fyodorov, a Russian ophthalmologist. It has been largely supplanted by newer, more accurate operations, such as photorefractive keratectomy, LASIK, Epi-LASIK and the phakic intraocular lens.
The ciliary body is a part of the eye that includes the ciliary muscle, which controls the shape of the lens, and the ciliary epithelium, which produces the aqueous humor. The aqueous humor is produced in the non-pigmented portion of the ciliary body. The ciliary body is part of the uvea, the layer of tissue that delivers oxygen and nutrients to the eye tissues. The ciliary body joins the ora serrata of the choroid to the root of the iris.
Corneal transplantation, also known as corneal grafting, is a surgical procedure where a damaged or diseased cornea is replaced by donated corneal tissue. When the entire cornea is replaced it is known as penetrating keratoplasty and when only part of the cornea is replaced it is known as lamellar keratoplasty. Keratoplasty simply means surgery to the cornea. The graft is taken from a recently deceased individual with no known diseases or other factors that may affect the chance of survival of the donated tissue or the health of the recipient.
Latanoprost, sold under the brand name Xalatan among others, is a medication used to treat increased pressure inside the eye. This includes ocular hypertension and open angle glaucoma. It is applied as eye drops to the eyes. Onset of effects is usually within four hours, and they last for up to a day.
Brimonidine is an α2 agonist medication used to treat open-angle glaucoma, ocular hypertension, and rosacea. In rosacea it improves the redness. It is used as eye drops or applied to the skin.
Acanthamoeba keratitis (AK) is a rare disease in which amoebae of the genus Acanthamoeba invade the clear portion of the front (cornea) of the eye. It affects roughly 100 people in the United States each year. Acanthamoeba are protozoa found nearly ubiquitously in soil and water and can cause infections of the skin, eyes, and central nervous system.
Iridocorneal endothelial (ICE) syndromes are a spectrum of diseases characterized by slowly progressive abnormalities of the corneal endothelium and features including corneal edema, iris distortion, and secondary angle-closure glaucoma. ICE syndromes are predominantly unilateral and nonhereditary. The condition occurs in predominantly middle-aged women.
Idoxuridine is an anti-herpesvirus antiviral drug.
Clobetasone (INN) is a corticosteroid used in dermatology, for treating such skin inflammation as seen in eczema, psoriasis and other forms of dermatitis, and ophthalmology. Topical clobetasone butyrate has shown minimal suppression of the hypothalamic–pituitary–adrenal axis.
Polycoria is a pathological condition of the eye characterized by more than one pupillary opening in the iris. It may be congenital or result from a disease affecting the iris. It results in decreased function of the iris and pupil, affecting the physical eye and visualization.
Corneal neovascularization (CNV) is the in-growth of new blood vessels from the pericorneal plexus into avascular corneal tissue as a result of oxygen deprivation. Maintaining avascularity of the corneal stroma is an important aspect of corneal pathophysiology as it is required for corneal transparency and optimal vision. A decrease in corneal transparency causes visual acuity deterioration. Corneal tissue is avascular in nature and the presence of vascularization, which can be deep or superficial, is always pathologically related.
Corneal ulcer, also called keratitis, is an inflammatory or, more seriously, infective condition of the cornea involving disruption of its epithelial layer with involvement of the corneal stroma. It is a common condition in humans particularly in the tropics and in farming. In developing countries, children afflicted by vitamin A deficiency are at high risk for corneal ulcer and may become blind in both eyes persisting throughout life. In ophthalmology, a corneal ulcer usually refers to having an infection, while the term corneal abrasion refers more to a scratch injury.
Brimonidine/timolol, sold under the brand name Combigan among others, is a fixed-dose combination medication eye drop used for the treatment of glaucoma. It is a combination of brimonidine and timolol.
Microbial corneal infection is the most serious and "most common vision threatening" complication of contact lens wear, which is believed to be strongly associated with contact lens cases. Such infections "are being increasingly recognized as an important cause of morbidity and blindness" and "may even be life-threatening." While the cornea is believed to be the most common site for fungal eye infections, other parts of the eye such as the orbit, sclera, eyelids, and more may also be involved. Contact lens cases are recognized as a "potential source of pathogens associated with corneal ulcers" and according to Moorfields Eye Hospital, contact lens wear is “the most prevalent risk factor for new cases of corneal ulcers.” Contaminants "isolated from contact lens associated corneal ulcers have often been shown to be" the same as found in the patient's contact lens case, thus providing evidence contaminated contact lens cases may be a "replenishable source of pathogenic microbes."
Herpetic simplex keratitis is a form of keratitis caused by recurrent herpes simplex virus (HSV) infection in the cornea.
A corneal button is a replacement cornea to be transplanted in the place of a damaged, diseased or opacified cornea, normally approximately 8.5–9.0mm in diameter. It is used in a corneal transplantation procedure whereby the whole, or part, of a cornea is replaced. The donor tissue can now be held for days to even weeks of the donor's death and is normally a small, rounded shape. The main use of the corneal button is during procedures where the entirety of the cornea needs to be replaced, also known as penetrating keratoplasty.
Corneal opacification is a term used when the human cornea loses its transparency. The term corneal opacity is used particularly for the loss of transparency of cornea due to scarring. Transparency of the cornea is dependent on the uniform diameter and the regular spacing and arrangement of the collagen fibrils within the stroma. Alterations in the spacing of collagen fibrils in a variety of conditions including corneal edema, scars, and macular corneal dystrophy is clinically manifested as corneal opacity. The term corneal blindness is commonly used to describe blindness due to corneal opacity.
Peripheral Ulcerative Keratitis (PUK) is a group of destructive inflammatory diseases involving the peripheral cornea in human eyes. The symptoms of PUK include pain, redness of the eyeball, photophobia, and decreased vision accompanied by distinctive signs of crescent-shaped damage of the cornea. The causes of this disease are broad, ranging from injuries, contamination of contact lenses, to association with other systemic conditions. PUK is associated with different ocular and systemic diseases. Mooren's ulcer is a common form of PUK. The majority of PUK is mediated by local or systemic immunological processes, which can lead to inflammation and eventually tissue damage. Standard PUK diagnostic test involves reviewing the medical history and a completing physical examinations. Two major treatments are the use of medications such as corticosteroids or other immunosuppressive agents and surgical resection of the conjunctiva. The prognosis of PUK is unclear with one study providing potential complications. PUK is a rare condition with an estimated incidence of 3 per million annually.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)