Heteroplasmy

Last updated

Heteroplasmy describes the presence of different copies of organellar DNA (mitochondrial DNA (mtDNA) or plastid DNA) within a single cell or individual. Although previously considered a transient, [1] and often, deleterious state, [2] persistent populations of heteroplasmic individuals have been recorded across plants, animals, and fungi. [3] [4] In animals and fungi, heteroplasmy can be found in mtDNA while plants can exhibit heteroplasmy in mtDNA and ptDNA. Heteroplasmy exists at various degrees of severity and can be caused by various processes such as somatic mutation, DNA recombination, and paternal mtDNA leakage. [5] It is hypothesized to also be caused by the incorporation of DNA from endosymbionts, though this is a relatively recent hypothesis and remains to be tested. [6]

Contents

Although low levels of heteroplasmy are common among human populations, [7] severe heteroplasmy can cause mitochondrial diseases when deleterious mtDNA mutants reach a threshold beyond which the proportion of wild-type mitochondria can no longer compensate for the dysfunctional mutants. [5] [8] [9] Heteroplasmy is also linked to aging as new mutations accumulate and as the frequencies of different copies of mtDNA fluctuate under various selective pressures. [10] [11] [12] [13] [14]

Types

The type of heteroplasmy can be sorted in two ways: the hierarchical level at which the heteroplasmy is present, and the way in which mutant haplotypes differ from the wild-type.

Hierarchical level refers to the level of biological organization at which different organellar haplotypes can be observed. [5] At the lowest level, a single organelle could contain multiple haplotypes. Next, a single cell could contain organelles with different haplotypes. Lastly, an organism can contain cells with different haplotypes.

Heteroplasmy types can be further broken down into length heteroplasmy and site heteroplasmy. [15] In length heteroplasmy, the two haplotypes differ in length through deletion and duplication. In site heteroplasmy, there are differences in the actual sequences of the two haplotypes (e.g. SNPs).

Causes

Heteroplasmy can be created through many different mechanisms.

De novo single-nucleotide polymorphisms (SNPs) can arise through somatic mutation in organellar DNA, forming the most basic example of heteroplasmy. Heteroplasmy can also be passed from parent to offspring with changes in the frequencies of the mutant copies due to stochastic processes in organellar inheritance. Outside of these sources of heteroplasmy, there are other proposed mechanisms by which heteroplasmy may be generated, with various amounts of evidence for each.

Biparental mtDNA inheritance and paternal mtDNA leakage are one of the more widely studied potential causes of heteroplasmy. According to various studies, rarely, paternal mtDNA is able to enter oocytes creating heteroplasmy within the resulting offspring. [16] [17] However, skeptics state the evidence to be insufficient, as observations of paternal mtDNA leakage could instead be attributed to paternal nuclear mitochondrial DNA segments (NUMTS) inbedded in nuclear DNA rather than in the mitochondria. [18] [19]

New mutants can also be generated via recombination. [20] [21] [1] Recombination occurs in sequences with short repeats, [22] creating sublimons, rare excised sequences of the mtDNA whose detection is indicative of these heteroplasmy-generating recombination events. [23] These sublimons themselves can also be considered a form of heteroplasmy, as these may replicate independently of the original mtDNA molecule and take over some tasks of the original mtDNA in a process called stoichiometric shifting. [24]

If paternal mtDNA leakage truly occurs, more mutants can be generated via recombination between paternal and maternal mtDNA. [25]

Prevalence and epidemiology

The prevalence of heteroplasmy can be studied at many hierarchical levels. [5]

  1. Heteroplasmy at the level of the individual organelle (mitochondrion or chloroplast);
  2. Heteroplasmy at the level of a single cell;
  3. Heteroplasmy at the level of a tissue;
  4. Heteroplasmy at the level of an individual organism;
  5. Heteroplasmy within a population;
  6. Heteroplasmy across different species.

The frequency of heteroplasmy at these different hierchical level is mediated by various selective pressures.

Fluctuations in frequency

Various forces shape the frequency of various mutant organellar DNA in heteroplasmic individuals. These forces separate into two categories: stochastic and deterministic. In stochastic forces, frequencies of the different copies of organellar DNA shift randomly. Many of these are caused by the randomness of processes related to organelle inheritance. This can occur at the cellular level as vegetative segregation during cell division when the organelles of a heteroplasmic cell segregate randomly betwen daughter cells, creating new cells with a potentially different frequency of each organellar DNA copy. [2] [1]

There is a wide variety of mitochondrial DNA genotypes in the maternal pool, which is represented by the bottle. The two genotypes in this maternal pool are represented by blue and yellow. When generated, each oocyte receives a small subsampling of mitochondrial DNA molecules in differing proportions. This is represented by the conveyor belt with oocytes, each one unique, as they are produced. Mitochondrial Bottleneck.png
There is a wide variety of mitochondrial DNA genotypes in the maternal pool, which is represented by the bottle. The two genotypes in this maternal pool are represented by blue and yellow. When generated, each oocyte receives a small subsampling of mitochondrial DNA molecules in differing proportions. This is represented by the conveyor belt with oocytes, each one unique, as they are produced.

This random segregation in heteroplasmic cells is hypothesized to decrease the negative effects of slow accumulations of copies of deleterious mutants (Muller's ratchet). Termed the mitochondrial bottleneck, this random segregation of organelles increases cell-to-cell variability in mutant load. As an organism develops, cell-level selection may then act to remove those cells with more mutant mtDNA, leading to a stabilisation or reduction in mutant load between generations. The mechanism underlying the bottleneck is debated, [27] [28] [29] with a recent mathematical and experimental metastudy providing evidence for a combination of random partitioning of mtDNAs at cell divisions and random turnover of mtDNA molecules within the cell. [30]

In deterministic forces, heteroplasmic entities are subjected to various forms of natural selection which result in fluctuations in the frequencies of various organellar DNA copies. [31] Both purifying selection and balancing selection can be present depending on the effects of the various mutant organellar DNA copies and fluctuations in the environment of said entities. Under purifying selection, entities with an excessively high proportion of the deleterious mutant do not reproduce, thereby reducing the frequency of that mutant. [31] [26] Conversely, fluctuations in environmental situations can theoretically favour the co-existence of multiple mutant copies, pushing heteroplasmic frequencies under balancing selection. [12]

Microheteroplasmy

Microheteroplasmy is defined as the presence of mutation levels of up to about 1−5% of an organism's mitochondrial genomes. Microheteroplasmy as a concept remains chiefly a relic of previous technical limitations where PCR and DNA sequencing were not able to detect lower frequencies of mutations of <10%. [32] In human mitochondrial DNA, microheteroplasmy can include hundreds of independent mutations in one organism, with each mutation usually found in 1–2% of all mitochondrial genomes. [33] Very low-level heteroplasmic variance is present in essentially all individuals, and is likely to be due to both inherited and somatic single base substitutions. [7]

Detection

DNA sequencing is the main way by which heteroplasmy can be detected. [34] Quantification of heteroplasmy can be done through qPCR with fluorescence detection. [34] Heteroplasmy can also be measured using southern hybridization. [22]

One of the main challenges with detecting and identifying heteroplasmy is the existence of nuclear mitochondrial DNA segments (NUMTS). Copies of mitochondrial DNA can integrate themselves into nuclear DNA, giving the illusion of multiple different mutant copies of organellar DNA. [35]

In the context of disease, screening procedures can be used to detect the proportion of deleterious organellar DNA copies to determine the potential disease severity. Preimplantation genetic screening (PGS) can be used to quantify the risk of a child of being affected by a mitochondrial disease. In most cases, a muscle mutation level of approximately 18% or less confers a 95% risk reduction. [36]

Disease

Heteroplasmy is common among human populations though many individuals only exhibit microheteroplasmy where only low levels of mutant organellar DNA copies are present. However, disease can develop when the proportion of the deleterious DNA copies exceeds a critical threshold. [5] [34] [26] In some diseases, the degree of heteroplasmy can be indicative of disease severity, such as in MELAS syndrome. [37] Other diseases that arise under severe heteroplasmic conditions include Leber optic atrophy, Kearns-Sayre syndrome, and MERRF syndrome. [38] [39]

Although microheteroplasmy does not directly cause disease conditions, some studies have found links between microheteroplasmy and various illnesses such as atherosclerosis, [40] coronary artery disease, [41] Parkinson's disease. [42] However, these diseases have complex risk factors and potential associations require further investigation.

Heteroplasmy in biodiversity studies

Beyond studies of heteroplasmy in human populations, heteroplasmy has also been a topic of investigation in the context of biodiversity studies. Non-transient heteroplasmy has been detected in wild populations of isopods, [43] [44] wasps, [45] canids, [46] cetaceans, [47] plantains (Plantaginaceae), [48] carrots (Apiaceae), [49] and basidiomycetes. [50]

The widespread prevalence of heteroplasmy across the tree of life has implications for the study of biodiversity when it comes to measuring and classifying species using organellar DNA.

DNA barcoding

Over the years, heteroplasmy has been detected across many taxonomic groups which has raised some concerns for the use of DNA barcoding in biodiversity studies. Heteroplasmy has been found to decrease the effectiveness and accuracy of DNA barcoding for species identification in different animal systems. [51] [52] [53] This decreased effectiveness can impede biodiversity monitoring (i.e. metabarcoding) if rates of heteroplasmy are high enough to obfuscate the actual number of species in a given tested sample. [54] Additionally, species descriptions utilizing single barcoding loci such as CytB or COI may be inaccurate if the barcode sequenced does not reflect the dominant haplotype in that species and if a hybrid sequence is obtained from multiple haplotypes in an individual. [55] These problems are not unique to heteroplasmy and also apply to NUMTS. [56]

Many solutions have been proposed to improve DNA barcoding and species identification through molecular methods, though most address heteroplasmy only indirectly. [57] [58]

Sequence illustrating heteroplasmy genotype of 16169 C/T in Nicholas II of Russia. Heteroplasmy present in Tsar Nicholas II.jpg
Sequence illustrating heteroplasmy genotype of 16169 C/T in Nicholas II of Russia.

Notable cases

One notable example of an otherwise healthy individual whose heteroplasmy was discovered incidentally is Nicholas II of Russia, whose heteroplasmy (and that of his brother) served to convince Russian authorities of the authenticity of his remains. [60]

See also

Notes and references

  1. 1 2 3 Birky, C. William (1983-11-04). "Relaxed Cellular Controls and Organelle Heredity". Science. 222 (4623): 468–475. Bibcode:1983Sci...222..468B. doi:10.1126/science.6353578. ISSN   0036-8075. PMID   6353578.
  2. 1 2 Stewart, James B.; Chinnery, Patrick F. (September 2015). "The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease". Nature Reviews Genetics. 16 (9): 530–542. doi:10.1038/nrg3966. ISSN   1471-0064. PMID   26281784.
  3. Radojicic, Jelena; Kristoffersen, Jon Bent; Polovina, Eirini-Slavka; Pavlidis, Pavlos; Ladoukakis, Emmanuel D. (2025-09-02). "Pervasive non-random mitochondrial DNA heteroplasmy in the hybrid water frog Pelophylax esculentus". BMC Ecology and Evolution. 25 (1) 91. Bibcode:2025BMCEE..25...91R. doi: 10.1186/s12862-025-02436-1 . ISSN   2730-7182. PMID   40890618.
  4. Zhang, Ying; Wang, Shaojuan; Li, Haixia; Liu, Chunli; Mi, Fei; Wang, Ruirui; Mo, Meizi; Xu, Jianping (2021-07-14). "Evidence for Persistent Heteroplasmy and Ancient Recombination in the Mitochondrial Genomes of the Edible Yellow Chanterelles From Southwestern China and Europe". Frontiers in Microbiology. 12 699598. doi: 10.3389/fmicb.2021.699598 . ISSN   1664-302X. PMC   8317506 . PMID   34335532.
  5. 1 2 3 4 5 Parakatselaki, Maria-Eleni; Ladoukakis, Emmanuel D. (2021-06-29). "mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences". Life (Basel, Switzerland). 11 (7): 633. Bibcode:2021Life...11..633P. doi: 10.3390/life11070633 . ISSN   2075-1729. PMC   8307225 . PMID   34209862.
  6. Davies, Olivia K.; Dorey, James B.; Stevens, Mark I.; Gardner, Michael G.; Bradford, Tessa M.; Schwarz, Michael P. (2022-01-01). "Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus". Current Research in Insect Science. 2 100036. Bibcode:2022CRIS....200036D. doi:10.1016/j.cris.2022.100036. ISSN   2666-5158. PMID   36003268.
  7. 1 2 Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R; et al. (2013). "Universal heteroplasmy of human mitochondrial DNA". Hum Mol Genet. 22 (2): 384–90. doi:10.1093/hmg/dds435. PMC   3526165 . PMID   23077218.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Goto, Yu-ichi; Nonaka, Ikuya; Horai, Satoshi (December 1990). "A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies". Nature. 348 (6302): 651–653. doi:10.1038/348651a0. ISSN   1476-4687. PMID   2102678.
  9. Stefano, George B.; Bjenning, Christina; Wang, Fuzhou; Wang, Nan; Kream, Richard M. (2017), Santulli, Gaetano (ed.), "Mitochondrial Heteroplasmy", Mitochondrial Dynamics in Cardiovascular Medicine, vol. 982, Cham: Springer International Publishing, pp. 577–594, doi:10.1007/978-3-319-55330-6_30, ISBN   978-3-319-55329-0, PMID   28551808 , retrieved 2025-12-06
  10. Elorza, Alvaro A.; Soffia, Juan Pablo (2021-02-22). "mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology". Frontiers in Cell and Developmental Biology. 9 625020. doi: 10.3389/fcell.2021.625020 . ISSN   2296-634X. PMC   7937615 . PMID   33692999.
  11. Sondheimer, Neal; Glatz, Catherine E.; Tirone, Jack E.; Deardorff, Matthew A.; Krieger, Abba M.; Hakonarson, Hakon (2011-04-15). "Neutral mitochondrial heteroplasmy and the influence of aging". Human Molecular Genetics. 20 (8): 1653–1659. doi:10.1093/hmg/ddr043. ISSN   1460-2083. PMC   3063991 . PMID   21296868.
  12. 1 2 Knorre, Dmitry A. (2023-10-09). "Mitochondrial heteroplasmy as a cause of cell-to-cell phenotypic heterogeneity in clonal populations". Frontiers in Cell and Developmental Biology. 11 1276629. doi: 10.3389/fcell.2023.1276629 . ISSN   2296-634X. PMC   10598549 . PMID   37886395.
  13. Pereira, Claudia V.; Gitschlag, Bryan L.; Patel, Maulik R. (2021-09-03). "Cellular mechanisms of mtDNA heteroplasmy dynamics". Critical Reviews in Biochemistry and Molecular Biology. 56 (5): 510–525. doi:10.1080/10409238.2021.1934812. ISSN   1040-9238. PMID   34120542.
  14. Klucnika, Anna; Ma, Hansong (March 2019). "A battle for transmission: the cooperative and selfish animal mitochondrial genomes". Open Biology. 9 (3) 180267. doi:10.1098/rsob.180267. ISSN   2046-2441. PMC   6451365 . PMID   30890027.
  15. Barr, Camille M.; Neiman, Maurine; Taylor, Douglas R. (October 2005). "Inheritance and recombination of mitochondrial genomes in plants, fungi and animals". New Phytologist. 168 (1): 39–50. Bibcode:2005NewPh.168...39B. doi:10.1111/j.1469-8137.2005.01492.x. ISSN   0028-646X. PMID   16159319.
  16. Polovina, Eirini-Slavka; Parakatselaki, Maria-Eleni; Ladoukakis, Emmanuel D. (2020-02-13). "Paternal leakage of mitochondrial DNA and maternal inheritance of heteroplasmy in Drosophila hybrids". Scientific Reports. 10 (1): 2599. Bibcode:2020NatSR..10.2599P. doi:10.1038/s41598-020-59194-x. ISSN   2045-2322. PMC   7018837 . PMID   32054873.
  17. Luo, Shiyu; Valencia, C. Alexander; Zhang, Jinglan; Lee, Ni-Chung; Slone, Jesse; Gui, Baoheng; Wang, Xinjian; Li, Zhuo; Dell, Sarah; Brown, Jenice; Chen, Stella Maris; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Fan, Pi-Chuan; Wong, Lee-Jun (2018-12-18). "Biparental Inheritance of Mitochondrial DNA in Humans". Proceedings of the National Academy of Sciences. 115 (51): 13039–13044. Bibcode:2018PNAS..11513039L. doi: 10.1073/pnas.1810946115 . ISSN   0027-8424. PMC   6304937 . PMID   30478036.
  18. Wei, Wei; Pagnamenta, Alistair T.; Gleadall, Nicholas; Sanchis-Juan, Alba; Stephens, Jonathan; Broxholme, John; Tuna, Salih; Odhams, Christopher A.; Fratter, Carl; Turro, Ernest; Caulfield, Mark J.; Taylor, Jenny C.; Rahman, Shamima; Chinnery, Patrick F. (2020-04-08). "Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans". Nature Communications. 11 (1): 1740. Bibcode:2020NatCo..11.1740W. doi:10.1038/s41467-020-15336-3. ISSN   2041-1723. PMC   7142097 . PMID   32269217.
  19. Lutz-Bonengel, Sabine; Parson, Walther (2019-02-05). "No further evidence for paternal leakage of mitochondrial DNA in humans yet". Proceedings of the National Academy of Sciences. 116 (6): 1821–1822. Bibcode:2019PNAS..116.1821L. doi: 10.1073/pnas.1820533116 . ISSN   0027-8424. PMC   6369822 . PMID   30674683.
  20. Ye, Zhiqiang; Zhao, Chaoxian; Raborn, R. Taylor; Lin, Man; Wei, Wen; Hao, Yue; Lynch, Michael (2022-04-11). "Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa". Molecular Biology and Evolution. 39 (4) msac059. doi:10.1093/molbev/msac059. ISSN   1537-1719. PMC   9004417 . PMID   35325186.
  21. McCauley, David E. (2013). "Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes". New Phytologist. 200 (4): 966–977. Bibcode:2013NewPh.200..966M. doi:10.1111/nph.12431. ISSN   1469-8137. PMID   23952142.
  22. 1 2 Kmiec, Beata; Woloszynska, Magdalena; Janska, Hanna (September 2006). "Heteroplasmy as a common state of mitochondrial genetic information in plants and animals". Current Genetics. 50 (3): 149–159. doi:10.1007/s00294-006-0082-1. ISSN   0172-8083. PMID   16763846.
  23. Kajander, O. A.; Rovio, A. T.; Majamaa, K.; Poulton, J.; Spelbrink, J. N.; Holt, I. J.; Karhunen, P. J.; Jacobs, H. T. (2000-11-22). "Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states". Human Molecular Genetics. 9 (19): 2821–2835. doi:10.1093/hmg/9.19.2821. ISSN   0964-6906. PMID   11092758.
  24. Woloszynska, M. (2010-03-01). "Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't". Journal of Experimental Botany. 61 (3): 657–671. doi:10.1093/jxb/erp361. ISSN   0022-0957. PMID   19995826.
  25. Ladoukakis, Emmanuel D.; Zouros, Eleftherios (2001-07-01). "Direct Evidence for Homologous Recombination in Mussel (Mytilus galloprovincialis) Mitochondrial DNA". Molecular Biology and Evolution. 18 (7): 1168–1175. doi:10.1093/oxfordjournals.molbev.a003904. ISSN   1537-1719. PMID   11420358.
  26. 1 2 3 Stewart, J., Larsson, N. (2014). "Keeping mtDNA in shape between generations". PLOS Genetics. 10 (10) e1004670. doi: 10.1371/journal.pgen.1004670 . PMC   4191934 . PMID   25299061.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Cree, L.M., Samuels, D.C., de Sousa Lopes, S.C., Rajasimha, H.K., Wonnapinij, P., Mann, J.R., Dahl, H.H.M. and Chinnery, P.F. (2008). "A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes". Nature Genetics. 40 (2): 249–254. doi:10.1038/ng.2007.63. PMID   18223651. S2CID   205344980.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Cao, L., Shitara, H., Horii, T., Nagao, Y., Imai, H., Abe, K., Hara, T., Hayashi, J.I. and Yonekawa, H. (2007). "The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells". Nature Genetics. 39 (3): 386–390. doi:10.1038/ng1970. PMID   17293866. S2CID   10686347.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Wai, T., Teoli, D. and Shoubridge, E.A. (2008). "The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes". Nature Genetics. 40 (12): 1484–1488. doi:10.1038/ng.258. PMID   19029901. S2CID   225349.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Johnston, I.G., Burgstaller, J.P., Havlicek, V., Kolbe, T., Rülicke, T., Brem, G., Poulton, J. and Jones, N.S. (2015). "Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism". eLife. 4 e07464. arXiv: 1512.02988 . doi: 10.7554/eLife.07464 . PMC   4486817 . PMID   26035426.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. 1 2 Rajasimha, Harsha Karur; Chinnery, Patrick F.; Samuels, David C. (February 2008). "Selection against Pathogenic mtDNA Mutations in a Stem Cell Population Leads to the Loss of the 3243A→G Mutation in Blood". The American Journal of Human Genetics. 82 (2): 333–343. doi:10.1016/j.ajhg.2007.10.007. PMC   2427290 . PMID   18252214.
  32. Dierckxsens, Nicolas; Mardulyn, Patrick; Smits, Guillaume (2020-03-01). "Unraveling heteroplasmy patterns with NOVOPlasty". NAR Genomics and Bioinformatics. 2 (1) lqz011. doi:10.1093/nargab/lqz011. ISSN   2631-9268. PMC   7671380 . PMID   33575563.
  33. Smigrodzki, R. M.; Khan, S. M. (2005). "Mitochondrial Microheteroplasmy and a Theory of Aging and Age-Related Disease". Rejuvenation Research. 8 (3): 172–198. doi:10.1089/rej.2005.8.172. PMID   16144471.
  34. 1 2 3 Sobenin, Igor A.; Mitrofanov, Konstantin Y.; Zhelankin, Andrey V.; Sazonova, Margarita A.; Postnov, Anton Y.; Revin, Victor V.; Bobryshev, Yuri V.; Orekhov, Alexander N. (2014). "Quantitative Assessment of Heteroplasmy of Mitochondrial Genome: Perspectives in Diagnostics and Methodological Pitfalls". BioMed Research International. 2014: 1–9. doi: 10.1155/2014/292017 . ISSN   2314-6133. PMC   4003915 . PMID   24818137.
  35. Santibanez-Koref, Mauro; Griffin, Helen; Turnbull, Douglass M.; Chinnery, Patrick F.; Herbert, Mary; Hudson, Gavin (May 2019). "Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution". Mitochondrion. 46: 302–306. doi:10.1016/j.mito.2018.08.003. PMC   6509278 . PMID   30098421.
  36. Hellebrekers, D. M. E. I.; Wolfe, R.; Hendrickx, A. T. M.; De Coo, I. F. M.; De Die, C. E.; Geraedts, J. P. M.; Chinnery, P. F.; Smeets, H. J. M. (2012). "PGD and heteroplasmic mitochondrial DNA point mutations: A systematic review estimating the chance of healthy offspring". Human Reproduction Update. 18 (4): 341–349. doi:10.1093/humupd/dms008. PMID   22456975.
  37. Cox, Benjamin C.; Pearson, Jennifer Y.; Mandrekar, Jay; Gavrilova, Ralitza H. (2023-12-14). "The clinical spectrum of MELAS and associated disorders across ages: a retrospective cohort study". Frontiers in Neurology. 14 1298569. doi: 10.3389/fneur.2023.1298569 . ISSN   1664-2295. PMID   38156086.
  38. Piccolo, G.; Focher, F.; Verri, A.; Spadari, S.; Banfi, P.; Gerosa, E.; Mazzarello, P. (December 1993). "Myoclonus epilepsy and ragged-red fibers: blood mitochondrial DNA heteroplasmy in affected and asymptomatic members of a family". Acta Neurologica Scandinavica. 88 (6): 406–409. doi:10.1111/j.1600-0404.1993.tb05368.x. PMID   8116340.
  39. Moraes, Carlos T.; Schon, Eric A.; DiMauro, Salvatore; Miranda, Armand F. (April 1989). "Heteroplasmy of mitochondrial genomes in clonal cultures from patients with Kearns-Sayre syndrome". Biochemical and Biophysical Research Communications. 160 (2): 765–771. Bibcode:1989BBRC..160..765M. doi:10.1016/0006-291X(89)92499-6. PMID   2541710.
  40. Gonzalez Urbistondo, F; Aparicio-Gavilanes, A; Gomez, J; Alvarez-Velasco, R; Pascual, I; Avanzas, P; Alen, A; Vazquez-Coto, M; Gonzalez-Fernandez, M; Garcia-Largo, C; Cuesta-Llavona, E; Moris De La Tassa, C; Eliecer, C; Lorca, R (2023-11-09). "Mitochondrial heteroplasmy as a marker for premature coronary artery disease: analysis of the poly-C tract of the control region sequence". European Heart Journal. 44 (Supplement_2) ehad655.3087. doi:10.1093/eurheartj/ehad655.3087. ISSN   0195-668X.
  41. Lorca, Rebeca; Aparicio, Andrea; Gómez, Juan; Álvarez-Velasco, Rut; Pascual, Isaac; Avanzas, Pablo; González-Urbistondo, Francisco; Alen, Alberto; Vázquez-Coto, Daniel; González-Fernández, Mar; García-Lago, Claudia; Cuesta-Llavona, Elías; Morís, César; Coto, Eliecer (2023-03-08). "Mitochondrial Heteroplasmy as a Marker for Premature Coronary Artery Disease: Analysis of the Poly-C Tract of the Control Region Sequence". Journal of Clinical Medicine. 12 (6): 2133. doi: 10.3390/jcm12062133 . ISSN   2077-0383. PMC   10053235 . PMID   36983136.
  42. Parker, W. D.; Parks, J. K. (2005). "Mitochondrial ND5 mutations in idiopathic Parkinson's disease". Biochemical and Biophysical Research Communications. 326 (3): 667–669. Bibcode:2005BBRC..326..667P. doi:10.1016/j.bbrc.2004.11.093. PMID   15596151.
  43. Peccoud, Jean; Chebbi, Mohamed Amine; Cormier, Alexandre; Moumen, Bouziane; Gilbert, Clément; Marcadé, Isabelle; Chandler, Christopher; Cordaux, Richard (September 2017). "Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing". Genetics. 207 (1): 269–280. doi:10.1534/genetics.117.203380. ISSN   1943-2631. PMC   5586377 . PMID   28679546.
  44. Doublet, Vincent; Souty-Grosset, Catherine; Bouchon, Didier; Cordaux, Richard; Marcadé, Isabelle (2008-08-13). Fugmann, Sebastian D. (ed.). "A Thirty Million Year-Old Inherited Heteroplasmy". PLOS ONE. 3 (8) e2938. Bibcode:2008PLoSO...3.2938D. doi: 10.1371/journal.pone.0002938 . ISSN   1932-6203. PMC   2491557 . PMID   18698356.
  45. Zhong, Jia-Lian; Zhu, Dao-Hong (December 2022). "Detection of two different mitochondrial genomes in a gall wasp species, Andricus mairei (Hymenoptera: Cynipoidea: Cynipidae)". Journal of Asia-Pacific Entomology. 25 (4) 101987. Bibcode:2022JAsPE..2501987Z. doi:10.1016/j.aspen.2022.101987.
  46. Forbes, Krystyn J.; Barrera, McIntyre A.; Nielsen-Roine, Karsten; Hersh, Evan W.; Janes, Jasmine K.; Harrower, William L.; Gorrell, Jamieson C. (2024-12-01). "Stabilizing selection and mitochondrial heteroplasmy in the Canada lynx ( Lynx canadensis)". Genome. 67 (12): 493–502. doi:10.1139/gen-2023-0094. ISSN   0831-2796. PMID   39226612.
  47. Vollmer, Nicole L.; Viricel, Amélia; Wilcox, Lynsey; Katherine Moore, M.; Rosel, Patricia E. (April 2011). "The occurrence of mtDNA heteroplasmy in multiple cetacean species". Current Genetics. 57 (2): 115–131. doi:10.1007/s00294-010-0331-1. ISSN   0172-8083. PMID   21234756.
  48. Levsen, N.; Bergero, R.; Charlesworth, D.; Wolff, K. (July 2016). "Frequent, geographically structured heteroplasmy in the mitochondria of a flowering plant, ribwort plantain (Plantago lanceolata)". Heredity. 117 (1): 1–7. Bibcode:2016Hered.117....1L. doi:10.1038/hdy.2016.15. ISSN   1365-2540. PMC   4901351 . PMID   26956565.
  49. Mandel, Jennifer R.; McCauley, David E. (2015). "Pervasive Mitochondrial Sequence Heteroplasmy in Natural Populations of Wild Carrot, Daucus carota spp. carota L". PLOS ONE. 10 (8) e0136303. Bibcode:2015PLoSO..1036303M. doi: 10.1371/journal.pone.0136303 . ISSN   1932-6203. PMC   4546501 . PMID   26295342.
  50. Wang, Pengfei; Sha, Tao; Zhang, Yunrun; Cao, Yang; Mi, Fei; Liu, Cunli; Yang, Dan; Tang, Xiaozhao; He, Xiaoxia; Dong, Jianyong; Wu, Jinyan; Yoell, Shanze; Yoell, Liam; Zhang, Ke-Qin; Zhang, Ying (2017-05-09). "Frequent heteroplasmy and recombination in the mitochondrial genomes of the basidiomycete mushroom Thelephora ganbajun". Scientific Reports. 7 (1): 1626. Bibcode:2017NatSR...7.1626W. doi:10.1038/s41598-017-01823-z. ISSN   2045-2322.
  51. Magnacca, Karl N; Brown, Mark JF (2010). "Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae)". BMC Evolutionary Biology. 10 (1): 174. Bibcode:2010BMCEE..10..174M. doi: 10.1186/1471-2148-10-174 . ISSN   1471-2148. PMC   2891727 . PMID   20540728.
  52. Magnacca, Karl N.; Brown, Mark J. F. (January 2010). "Tissue segregation of mitochondrial haplotypes in heteroplasmic Hawaiian bees: implications for DNA barcoding". Molecular Ecology Resources. 10 (1): 60–68. Bibcode:2010MolER..10...60M. doi:10.1111/j.1755-0998.2009.02724.x. ISSN   1755-098X. PMID   21564991.
  53. Martínez, Mariano; Harms, Lars; Abele, Doris; Held, Christoph (2023-04-18). "Mitochondrial Heteroplasmy and PCR Amplification Bias Lead to Wrong Species Delimitation with High Confidence in the South American and Antarctic Marine Bivalve Aequiyoldia eightsii Species Complex". Genes. 14 (4): 935. doi: 10.3390/genes14040935 . ISSN   2073-4425. PMC   10138075 . PMID   37107693.
  54. Iwaszkiewicz-Eggebrecht, Ela; Goodsell, Robert M.; Bengsson, Bengt-Åke; Mutanen, Marko; Klinth, Mårten; van Dijk, Laura J. A.; Łukasik, Piotr; Miraldo, Andreia; Andersson, Anders; Tack, Ayco Jerome Michel; Roslin, Tomas; Ronquist, Fredrik (May 2025). "High-throughput biodiversity surveying sheds new light on the brightest of insect taxa". Proceedings of the Royal Society B: Biological Sciences. 292 (2046) 20242974. doi:10.1098/rspb.2024.2974. ISSN   1471-2954. PMC   12074807 . PMID   40359979.
  55. Sipiczki, Matthias (July 2022). "When barcoding fails: Genome chimerization (admixing) and reticulation obscure phylogenetic and taxonomic relationships". Molecular Ecology Resources. 22 (5): 1762–1785. Bibcode:2022MolER..22.1762S. doi:10.1111/1755-0998.13586. ISSN   1755-098X. PMC   9303175 . PMID   35060340.
  56. Song, Hojun; Buhay, Jennifer E.; Whiting, Michael F.; Crandall, Keith A. (2008-09-09). "Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified". Proceedings of the National Academy of Sciences. 105 (36): 13486–13491. Bibcode:2008PNAS..10513486S. doi: 10.1073/pnas.0803076105 . ISSN   0027-8424.
  57. Dupuis, Julian R.; Roe, Amanda D.; Sperling, Felix A. H. (September 2012). "Multi-locus species delimitation in closely related animals and fungi: one marker is not enough". Molecular Ecology. 21 (18): 4422–4436. Bibcode:2012MolEc..21.4422D. doi:10.1111/j.1365-294X.2012.05642.x. ISSN   0962-1083. PMID   22891635.
  58. Kang, Ah Rang; Kim, Min Jee; Park, In Ah; Kim, Kee Young; Kim, Iksoo (2016-09-02). "Extent and divergence of heteroplasmy of the DNA barcoding region in Anapodisma miramae (Orthoptera: Acrididae)". Mitochondrial DNA Part A. 27 (5): 3405–3414. doi:10.3109/19401736.2015.1022730. ISSN   2470-1394.
  59. Coble MD, Loreille OM, Wadhams MJ, Edson SM, Maynard K, Meyer CE, Niederstätter H, Berger C, Berger B, Falsetti AB, Gill P, Parson W, Finelli LN (2009). "Mystery solved: the identification of the two missing Romanov children using DNA analysis". PLoS ONE . 4 (3) e4838. Bibcode:2009PLoSO...4.4838C. doi: 10.1371/journal.pone.0004838 . PMC   2652717 . PMID   19277206.
  60. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (April 1996). "Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II". Nat. Genet. 12 (4): 417–20. doi:10.1038/ng0496-417. PMID   8630496. S2CID   287478.