Hidden layer

Last updated
Example of hidden layers in a deep neural network Example of a deep neural network.png
Example of hidden layers in a deep neural network

In artificial neural networks, a hidden layer is a series of artificial neurons that processes the inputs received from the input layers before passing them to the output layer. An example of a neural network utilizing a hidden layer is the feedforward neural network. [1]

The hidden layers transform inputs from the input layer to the output layer. This is accomplished by applying what are called weights to the inputs and passing them through what is called an activation function, which calculate input based on input and weight. This allows the artificial neural network to learn non-linear relationships between the input and output data.

The weighted inputs can be randomly assigned. They can also be fine-tuned and calibrated through what is called backpropagation. [2]

Limitations

A large number of hidden layers in terms of the complexity at hand can cause what is called overfitting, where the network matches the data to the level where generalization is limited. With the opposite situation of the number of hidden layers being less than the complexity at hand can cause underfitting, and the system may struggle to take on the problem given to it. [3]

Related Research Articles

<span class="mw-page-title-main">Neural network (machine learning)</span> Computational model used in machine learning, based on connected, hierarchical functions

In machine learning, a neural network is a model inspired by the structure and function of biological neural networks in animal brains.

In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its predictions based on a linear predictor function combining a set of weights with the feature vector.

Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision. Some researchers consider self-supervised learning a form of unsupervised learning.

<span class="mw-page-title-main">Artificial neuron</span> Mathematical function conceived as a crude model

An artificial neuron is a mathematical function conceived as a model of biological neurons in a neural network. Artificial neurons are the elementary units of artificial neural networks. The artificial neuron is a function that receives one or more inputs, applies weights to these inputs, and sums them to produce an output.

Instantaneously trained neural networks are feedforward artificial neural networks that create a new hidden neuron node for each novel training sample. The weights to this hidden neuron separate out not only this training sample but others that are near it, thus providing generalization. This separation is done using the nearest hyperplane that can be written down instantaneously. In the two most important implementations the neighborhood of generalization either varies with the training sample or remains constant. These networks use unary coding for an effective representation of the data sets.

In machine learning, backpropagation is a gradient estimation method commonly used for training neural networks to compute the network parameter updates.

In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. Such algorithms function by making data-driven predictions or decisions, through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data sets. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets.

Recurrent neural networks (RNNs) are a class of artificial neural networks for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

<span class="mw-page-title-main">Feedforward neural network</span> One of two broad types of artificial neural network

A feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow. Modern feedforward networks are trained using the backpropagation method and are colloquially referred to as the "vanilla" neural networks.

<span class="mw-page-title-main">Quantum neural network</span> Quantum Mechanics in Neural Networks

Quantum neural networks are computational neural network models which are based on the principles of quantum mechanics. The first ideas on quantum neural computation were published independently in 1995 by Subhash Kak and Ron Chrisley, engaging with the theory of quantum mind, which posits that quantum effects play a role in cognitive function. However, typical research in quantum neural networks involves combining classical artificial neural network models with the advantages of quantum information in order to develop more efficient algorithms. One important motivation for these investigations is the difficulty to train classical neural networks, especially in big data applications. The hope is that features of quantum computing such as quantum parallelism or the effects of interference and entanglement can be used as resources. Since the technological implementation of a quantum computer is still in a premature stage, such quantum neural network models are mostly theoretical proposals that await their full implementation in physical experiments.

<span class="mw-page-title-main">ADALINE</span> Early single-layer artificial neural network

ADALINE is an early single-layer artificial neural network and the name of the physical device that implemented this network. It was developed by professor Bernard Widrow and his doctoral student Ted Hoff at Stanford University in 1960. It is based on the perceptron. It consists of a weight, a bias and a summation function. The weights and biases were implemented by rheostats, and later, memistors.

<span class="mw-page-title-main">Echo state network</span> Type of reservoir computer

An echo state network (ESN) is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer. The connectivity and weights of hidden neurons are fixed and randomly assigned. The weights of output neurons can be learned so that the network can produce or reproduce specific temporal patterns. The main interest of this network is that although its behavior is non-linear, the only weights that are modified during training are for the synapses that connect the hidden neurons to output neurons. Thus, the error function is quadratic with respect to the parameter vector and can be differentiated easily to a linear system.

Neural cryptography is a branch of cryptography dedicated to analyzing the application of stochastic algorithms, especially artificial neural network algorithms, for use in encryption and cryptanalysis.

<span class="mw-page-title-main">Time delay neural network</span>

Time delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network.

There are many types of artificial neural networks (ANN).

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Catastrophic interference, also known as catastrophic forgetting, is the tendency of an artificial neural network to abruptly and drastically forget previously learned information upon learning new information.

A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. Convolution-based networks are the de-facto standard in deep learning-based approaches to computer vision and image processing, and have only recently have been replaced -- in some cases -- by newer deep learning architectures such as the transformer. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer, 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded convolution kernels, only 25 neurons are required to process 5x5-sized tiles. Higher-layer features are extracted from wider context windows, compared to lower-layer features.

A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.

A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.

References

  1. Antoniadis, Panagiotis (March 18, 2024). "Hidden Layers in a Neural Network | Baeldung on Computer Science". Baeldung. Retrieved May 2, 2024.
  2. Rouse, Margaret (2018-09-05). "Hidden Layer". Techopedia. Retrieved May 2, 2024.
  3. Effects of Hidden Layers on the Efficiency of Neural Networks Muhammad Uzair, Noreen Jamil IEEE 23rd Multitopic Conference