Hilbert's third problem

Last updated
Two polyhedra of equal volume, cut into two pieces which can be reassembled into either polyhedron Cube and prism from two bricks.svg
Two polyhedra of equal volume, cut into two pieces which can be reassembled into either polyhedron

The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second? Based on earlier writings by Carl Friedrich Gauss, [1] David Hilbert conjectured that this is not always possible. This was confirmed within the year by his student Max Dehn, who proved that the answer in general is "no" by producing a counterexample. [2]

Contents

The answer for the analogous question about polygons in 2 dimensions is "yes" and had been known for a long time; this is the Wallace–Bolyai–Gerwien theorem.

Unknown to Hilbert and Dehn, Hilbert's third problem was also proposed independently by Władysław Kretkowski for a math contest of 1882 by the Academy of Arts and Sciences of Kraków, and was solved by Ludwik Antoni Birkenmajer with a different method than Dehn's. Birkenmajer did not publish the result, and the original manuscript containing his solution was rediscovered years later. [3]

History and motivation

The formula for the volume of a pyramid,

had been known to Euclid, but all proofs of it involve some form of limiting process or calculus, notably the method of exhaustion or, in more modern form, Cavalieri's principle. Similar formulas in plane geometry can be proven with more elementary means. Gauss regretted this defect in two of his letters to Christian Ludwig Gerling, who proved that two symmetric tetrahedra are equidecomposable. [3]

Gauss's letters were the motivation for Hilbert: is it possible to prove the equality of volume using elementary "cut-and-glue" methods? Because if not, then an elementary proof of Euclid's result is also impossible.

Dehn's answer

Dehn's proof is an instance in which abstract algebra is used to prove an impossibility result in geometry. Other examples are doubling the cube and trisecting the angle.

Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second. Any two scissors-congruent polyhedra have the same volume. Hilbert asks about the converse.

For every polyhedron , Dehn defines a value, now known as the Dehn invariant , with the property that, if is cut into polyhedral pieces , then

In particular, if two polyhedra are scissors-congruent, then they have the same Dehn invariant. He then shows that every cube has Dehn invariant zero while every regular tetrahedron has non-zero Dehn invariant. Therefore, these two shapes cannot be scissors-congruent.

A polyhedron's invariant is defined based on the lengths of its edges and the angles between its faces. If a polyhedron is cut into two, some edges are cut into two, and the corresponding contributions to the Dehn invariants should therefore be additive in the edge lengths. Similarly, if a polyhedron is cut along an edge, the corresponding angle is cut into two. Cutting a polyhedron typically also introduces new edges and angles; their contributions must cancel out. The angles introduced when a cut passes through a face add to , and the angles introduced around an edge interior to the polyhedron add to . Therefore, the Dehn invariant is defined in such a way that integer multiples of angles of give a net contribution of zero.

All of the above requirements can be met by defining as an element of the tensor product of the real numbers (representing lengths of edges) and the quotient space (representing angles, with all rational multiples of replaced by zero). For some purposes, this definition can be made using the tensor product of modules over (or equivalently of abelian groups), while other aspects of this topic make use of a vector space structure on the invariants, obtained by considering the two factors and to be vector spaces over and taking the tensor product of vector spaces over . This choice of structure in the definition does not make a difference in whether two Dehn invariants, defined in either way, are equal or unequal.

For any edge of a polyhedron , let be its length and let denote the dihedral angle of the two faces of that meet at , measured in radians and considered modulo rational multiples of . The Dehn invariant is then defined as

where the sum is taken over all edges of the polyhedron . It is a valuation.

Further information

In light of Dehn's theorem above, one might ask "which polyhedra are scissors-congruent"? Sydler (1965) showed that two polyhedra are scissors-congruent if and only if they have the same volume and the same Dehn invariant. [4] Børge Jessen later extended Sydler's results to four dimensions. [5] In 1990, Dupont and Sah provided a simpler proof of Sydler's result by reinterpreting it as a theorem about the homology of certain classical groups. [6]

Debrunner showed in 1980 that the Dehn invariant of any polyhedron with which all of three-dimensional space can be tiled periodically is zero. [7]

Unsolved problem in mathematics:

In spherical or hyperbolic geometry, must polyhedra with the same volume and Dehn invariant be scissors-congruent?

Jessen also posed the question of whether the analogue of Jessen's results remained true for spherical geometry and hyperbolic geometry. In these geometries, Dehn's method continues to work, and shows that when two polyhedra are scissors-congruent, their Dehn invariants are equal. However, it remains an open problem whether pairs of polyhedra with the same volume and the same Dehn invariant, in these geometries, are always scissors-congruent. [8]

Original question

Hilbert's original question was more complicated: given any two tetrahedra T1 and T2 with equal base area and equal height (and therefore equal volume), is it always possible to find a finite number of tetrahedra, so that when these tetrahedra are glued in some way to T1 and also glued to T2, the resulting polyhedra are scissors-congruent?

Dehn's invariant can be used to yield a negative answer also to this stronger question.

See also

Related Research Articles

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with four faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut.

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Theorem in differential geometry

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

<span class="mw-page-title-main">Wallace–Bolyai–Gerwien theorem</span> Theorem on polygon dissections

In geometry, the Wallace–Bolyai–Gerwien theorem, named after William Wallace, Farkas Bolyai and P. Gerwien, is a theorem related to dissections of polygons. It answers the question when one polygon can be formed from another by cutting it into a finite number of pieces and recomposing these by translations and rotations. The Wallace–Bolyai–Gerwien theorem states that this can be done if and only if two polygons have the same area.

In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that certain polyhedra with equal volume cannot be dissected into each other.

In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Elongated triangular orthobicupola</span> Johnson solid with 20 faces

In geometry, the elongated triangular orthobicupola is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated triangular gyrobicupola</span> 36th Johnson solid

In geometry, the elongated triangular gyrobicupola is a polyhedron constructed by attaching two regular triangular cupolas to the base of a regular hexagonal prism, with one of them rotated in . It is an example of Johnson solid.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

Cauchy's theorem is a theorem in geometry, named after Augustin Cauchy. It states that convex polytopes in three dimensions with congruent corresponding faces must be congruent to each other. That is, any polyhedral net formed by unfolding the faces of the polyhedron onto a flat surface, together with gluing instructions describing which faces should be connected to each other, uniquely determines the shape of the original polyhedron. For instance, if six squares are connected in the pattern of a cube, then they must form a cube: there is no convex polyhedron with six square faces connected in the same way that does not have the same shape.

<span class="mw-page-title-main">Flexible polyhedron</span>

In geometry, a flexible polyhedron is a polyhedral surface without any boundary edges, whose shape can be continuously changed while keeping the shapes of all of its faces unchanged. The Cauchy rigidity theorem shows that in dimension 3 such a polyhedron cannot be convex.

<span class="mw-page-title-main">Jessen's icosahedron</span> Right-angled non-convex polyhedron

Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, is a non-convex polyhedron with the same numbers of vertices, edges, and faces as the regular icosahedron. It is named for Børge Jessen, who studied it in 1967. In 1971, a family of nonconvex polyhedra including this shape was independently discovered and studied by Adrien Douady under the name six-beakedshaddock; later authors have applied variants of this name more specifically to Jessen's icosahedron.

In geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges that are mutually orthogonal. They were introduced by Ludwig Schläfli, who called them orthoschemes and studied their volume in Euclidean, hyperbolic, and spherical geometries. H. S. M. Coxeter later named them after Schläfli. As right triangles provide the basis for trigonometry, orthoschemes form the basis of a trigonometry of n dimensions, as developed by Schoute who called it polygonometry. J.-P. Sydler and Børge Jessen studied orthoschemes extensively in connection with Hilbert's third problem.

<span class="mw-page-title-main">Compound of four tetrahedra</span> Polyhedral compound

In geometry, a compound of four tetrahedra can be constructed by four tetrahedra in a number of different symmetry positions.

The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.

In geometry, the Gram–Euler theorem, Gram-Sommerville, Brianchon-Gram or Gram relation is a generalization of the internal angle sum formula of polygons to higher-dimensional polytopes. The equation constrains the sums of the interior angles of a polytope in a manner analogous to the Euler relation on the number of d-dimensional faces.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. Carl Friedrich Gauss: Werke, vol. 8, pp. 241 and 244
  2. Dehn, Max (1901). "Ueber den Rauminhalt". Mathematische Annalen . 55 (3): 465–478. doi:10.1007/BF01448001. S2CID   120068465.
  3. 1 2 Ciesielska, Danuta; Ciesielski, Krzysztof (2018-05-29). "Equidecomposability of Polyhedra: A Solution of Hilbert's Third Problem in Kraków before ICM 1900". The Mathematical Intelligencer. 40 (2): 55–63. doi: 10.1007/s00283-017-9748-4 . ISSN   0343-6993.
  4. Sydler, J.-P. (1965). "Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions". Comment. Math. Helv. 40: 43–80. doi:10.1007/bf02564364. S2CID   123317371.
  5. Jessen, Børge (1972). "Zur Algebra der Polytope". Nachrichten der Akademie der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Fachgruppe II: Nachrichten aus der Physik, Astronomie, Geophysik, Technik: 47–53. MR   0353150. Zbl   0262.52004.
  6. Dupont, Johan; Sah, Chih-Han (1990). "Homology of Euclidean groups of motions made discrete and Euclidean scissors congruences". Acta Math. 164 (1–2): 1–27. doi: 10.1007/BF02392750 .
  7. Debrunner, Hans E. (1980). "Über Zerlegungsgleichheit von Pflasterpolyedern mit Würfeln". Arch. Math. 35 (6): 583–587. doi:10.1007/BF01235384. S2CID   121301319.
  8. Dupont, Johan L. (2001), Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, p. 6, doi:10.1142/9789812810335, ISBN   978-981-02-4507-8, MR   1832859, archived from the original on 2016-04-29.

Further reading