Histone code

Last updated

The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications (known as histone marks) to histone proteins, primarily on their unstructured ends. Together with similar modifications such as DNA methylation it is part of the epigenetic code. [1] Histones associate with DNA to form nucleosomes, which themselves bundle to form chromatin fibers, which in turn make up the more familiar chromosome. Histones are globular proteins with a flexible N-terminus (taken to be the tail) that protrudes from the nucleosome. Many of the histone tail modifications correlate very well to chromatin structure and both histone modification state and chromatin structure correlate well to gene expression levels. The critical concept of the histone code hypothesis is that the histone modifications serve to recruit other proteins by specific recognition of the modified histone via protein domains specialized for such purposes, rather than through simply stabilizing or destabilizing the interaction between histone and the underlying DNA. These recruited proteins then act to alter chromatin structure actively or to promote transcription. For details of gene expression regulation by histone modifications see table below.

Contents

The hypothesis

The hypothesis is that chromatin-DNA interactions are guided by combinations of histone modifications. While it is accepted that modifications (such as methylation, acetylation, ADP-ribosylation, ubiquitination, citrullination, SUMO-ylation [2] and phosphorylation) to histone tails alter chromatin structure, a complete understanding of the precise mechanisms by which these alterations to histone tails influence DNA-histone interactions remains elusive. However, some specific examples have been worked out in detail. For example, phosphorylation of serine residues 10 and 28 on histone H3 is a marker for chromosomal condensation. Similarly, the combination of phosphorylation of serine residue 10 and acetylation of a lysine residue 14 on histone H3 is a tell-tale sign of active transcription.

Schematic representation of histone modifications. Based on Rodriguez-Paredes and Esteller, Nature, 2011 Histone modifications.png
Schematic representation of histone modifications. Based on Rodriguez-Paredes and Esteller, Nature, 2011

Modifications

Well characterized modifications to histones include: [3]

However, there are many more histone modifications, and sensitive mass spectrometry approaches have recently greatly expanded the catalog. [7]

A very basic summary of the histone code for gene expression status is given below (histone nomenclature is described here):

Type of
modification
Histone
H3K4H3K9H3K14H3K27H3K79H3K122H4K20H2BK5
mono-methylation activation [8] activation [9] activation [9] activation [9] [10] activation [9] activation [9]
di-methylation repression [4] repression [4] activation [10]
tri-methylationactivation [11] repression [9] repression [9] activation, [10]
repression [9]
repression [4]
acetylation activation [11] activation [11] activation [12] activation [13]

Histone H2B

Histone H3

  • H3K4me1 - primed enhancers
  • H3K4me3 is enriched in transcriptionally active promoters. [14]
  • H3K9me2 -repression
  • H3K9me3 is found in constitutively repressed genes.
  • H3K27me3 is found in facultatively repressed genes. [9]
  • H3K36me
  • H3K36me2
  • H3K36me3 is found in actively transcribed gene bodies.
  • H3K79me2
  • H3K9ac is found in actively transcribed promoters.
  • H3K14ac is found in actively transcribed promoters.
  • H3K23ac
  • H3K27ac distinguishes active enhancers from poised enhancers.
  • H3K36ac
  • H3K56ac is a proxy for de novo histone assembly. [15]
  • H3K122ac is enriched in poised promoters and also found in a different type of putative enhancer that lacks H3K27ac.

Histone H4

Complexity

Unlike this simplified model, any real histone code has the potential to be massively complex; each of the four standard histones can be simultaneously modified at multiple different sites with multiple different modifications. To give an idea of this complexity, histone H3 contains nineteen lysines known to be methylated—each can be un-, mono-, di- or tri-methylated. If modifications are independent, this allows a potential 419 or 280 billion different lysine methylation patterns, far more than the maximum number of histones in a human genome (6.4 Gb / ~150 bp = ~44 million histones if they are very tightly packed). And this does not include lysine acetylation (known for H3 at nine residues), arginine methylation (known for H3 at three residues) or threonine/serine/tyrosine phosphorylation (known for H3 at eight residues), not to mention modifications of other histones.[ citation needed ]

Every nucleosome in a cell can therefore have a different set of modifications, raising the question of whether common patterns of histone modifications exist. A study of about 40 histone modifications across human gene promoters found over 4000 different combinations used, over 3000 occurring at only a single promoter. However, patterns were discovered including a set of 17 histone modifications that are present together at over 3000 genes. [16] Mass spectrometry-based top-down proteomics has provided more insight into these patterns by being able to discriminate single molecule co-occurrence from co-localization in the genome or on the same nucleosome. [17] A variety of approaches have been used to delve into detailed biochemical mechanisms that demonstrate the importance of interplay between histone modifications. Thus, specific patterns of histone modifications are more common than others. These patterns are functionally important but they are intricate and challenging to study. We currently have the best biochemical understanding of the importance of a relatively small number of discrete modifications and a few combinations.

Structural determinants of histone recognition by readers, writers, and erasers of the histone code are revealed by a growing body of experimental data. [18]

See also

Related Research Articles

<span class="mw-page-title-main">Histone</span> Protein family around which DNA winds to form nucleosomes

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

Histone H2B is one of the 5 main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and long N-terminal and C-terminal tails, H2B is involved with the structure of the nucleosomes.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">Histone-modifying enzymes</span> Type of enzymes

Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. To safely store the eukaryotic genome, DNA is wrapped around four core histone proteins, which then join to form nucleosomes. These nucleosomes further fold together into highly condensed chromatin, which renders the organism's genetic material far less accessible to the factors required for gene transcription, DNA replication, recombination and repair. Subsequently, eukaryotic organisms have developed intricate mechanisms to overcome this repressive barrier imposed by the chromatin through histone modification, a type of post-translational modification which typically involves covalently attaching certain groups to histone residues. Once added to the histone, these groups elicit either a loose and open histone conformation, euchromatin, or a tight and closed histone conformation, heterochromatin. Euchromatin marks active transcription and gene expression, as the light packing of histones in this way allows entry for proteins involved in the transcription process. As such, the tightly packed heterochromatin marks the absence of current gene expression.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.

H3K27ac is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates acetylation of the lysine residue at N-terminal position 27 of the histone H3 protein.

H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein.

H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers.

H4K16ac is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the acetylation at the 16th lysine residue of the histone H4 protein.

H4K5ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H4 protein. H4K5 is the closest lysine residue to the N-terminal tail of histone H4. It is enriched at the transcription start site (TSS) and along gene bodies. Acetylation of histone H4K5 and H4K12ac is enriched at centromeres.

H4K8ac, representing an epigenetic modification to the DNA packaging protein histone H4, is a mark indicating the acetylation at the 8th lysine residue of the histone H4 protein. It has been implicated in the prevalence of malaria.

H4K12ac is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the acetylation at the 12th lysine residue of the histone H4 protein. H4K12ac is involved in learning and memory. It is possible that restoring this modification could reduce age-related decline in memory.

H3K23ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 23rd lysine residue of the histone H3 protein.

H3K14ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 14th lysine residue of the histone H3 protein.

H3K9ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 9th lysine residue of the histone H3 protein.

H3K36ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 36th lysine residue of the histone H3 protein.

H3K56ac is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the acetylation at the 56th lysine residue of the histone H3 protein.

H3K36me is an epigenetic modification to the DNA packaging protein Histone H3, specifically, the mono-methylation at the 36th lysine residue of the histone H3 protein.

References

  1. Jenuwein T, Allis C (2001). "Translating the histone code". Science. 293 (5532): 1074–80. CiteSeerX   10.1.1.453.900 . doi:10.1126/science.1063127. PMID   11498575. S2CID   1883924.
  2. 1 2 Shiio, Yuzuru; Eisenman, Robert N. (11 November 2003). "Histone sumoylation is associated with transcriptional repression". Proceedings of the National Academy of Sciences. 100 (23): 13225–13230. doi: 10.1073/pnas.1735528100 . PMC   263760 . PMID   14578449.
  3. Strahl B, Allis C (2000). "The language of covalent histone modifications". Nature. 403 (6765): 41–5. Bibcode:2000Natur.403...41S. doi:10.1038/47412. PMID   10638745. S2CID   4418993.
  4. 1 2 3 4 Rosenfeld, Jeffrey A; Wang, Zhibin; Schones, Dustin; Zhao, Keji; DeSalle, Rob; Zhang, Michael Q (31 March 2009). "Determination of enriched histone modifications in non-genic portions of the human genome". BMC Genomics. 10: 143. doi: 10.1186/1471-2164-10-143 . PMC   2667539 . PMID   19335899.
  5. Hublitz, Philip; Albert, Mareike; Peters, Antoine (28 April 2009). "Mechanisms of Transcriptional Repression by Histone Lysine Methylation". The International Journal of Developmental Biology. 10 (1387). Basel: 335–354. doi: 10.1387/ijdb.082717ph . ISSN   1696-3547. PMID   19412890.
  6. 1 2 Wei S, Li C, Yin Z, Wen J, Meng H, Xue L, Wang J (2018). "Histone methylation in DNA repair and clinical practice: new findings during the past 5-years". J Cancer. 9 (12): 2072–2081. doi:10.7150/jca.23427. PMC   6010677 . PMID   29937925.
  7. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. (2011). "Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification". Cell. 146 (6): 1016–28. doi:10.1016/j.cell.2011.08.008. PMC   3176443 . PMID   21925322.
  8. Benevolenskaya EV (August 2007). "Histone H3K4 demethylases are essential in development and differentiation". Biochem. Cell Biol. 85 (4): 435–43. doi:10.1139/o07-057. PMID   17713579.
  9. 1 2 3 4 5 6 7 8 9 Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (May 2007). "High-resolution profiling of histone methylations in the human genome". Cell. 129 (4): 823–37. doi: 10.1016/j.cell.2007.05.009 . PMID   17512414.
  10. 1 2 3 Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (April 2008). "DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells". Mol. Cell. Biol. 28 (8): 2825–39. doi:10.1128/MCB.02076-07. PMC   2293113 . PMID   18285465.
  11. 1 2 3 Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Weng Z, Birney E, Carter NP, Vetrie D, Dunham I (June 2007). "The landscape of histone modifications across 1% of the human genome in five human cell lines". Genome Res. 17 (6): 691–707. doi:10.1101/gr.5704207. PMC   1891331 . PMID   17567990.
  12. Creyghton, MP (Dec 2010). "Histone H3K27ac separates active from poised enhancers and predicts developmental state". Proc Natl Acad Sci USA. 107 (50): 21931–6. doi: 10.1073/pnas.1016071107 . PMC   3003124 . PMID   21106759.
  13. Pradeepa, Madapura M.; Grimes, Graeme R.; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C. A.; Schneider, Robert; Bickmore, Wendy A. (2016-04-18). "Histone H3 globular domain acetylation identifies a new class of enhancers". Nature Genetics. 48 (6): 681–686. doi:10.1038/ng.3550. ISSN   1546-1718. PMC   4886833 . PMID   27089178.
  14. Liang, G (2004). "Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome". Proc. Natl. Acad. Sci. USA. 101 (19): 7357–7362. Bibcode:2004PNAS..101.7357L. doi: 10.1073/pnas.0401866101 . PMC   409923 . PMID   15123803.
  15. Jeronimo, Célia; Poitras, Christian; Robert, François (30 July 2019). "Histone Recycling by FACT and Spt6 during Transcription Prevents the Scrambling of Histone Modifications". Cell Reports. 28 (5): 1206–1218.e8. doi: 10.1016/j.celrep.2019.06.097 . PMID   31365865.
  16. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. (2008). "Combinatorial patterns of histone acetylations and methylations in the human genome". Nat Genet. 40 (7): 897–903. doi:10.1038/ng.154. PMC   2769248 . PMID   18552846.
  17. Taylor BC, Young NL (10 Feb 2021). "Combinations of histone post-translational modifications". Biochemical Journal. 487 (3): 511–532. doi:10.1042/BCJ20200170. PMID   33567070.
  18. Wang M, Mok MW, Harper H, Lee WH, Min J, Knapp S, Oppermann U, Marsden B, Schapira M (24 Aug 2010). "Structural Genomics of Histone Tail Recognition". Bioinformatics. 26 (20): 2629–2630. doi:10.1093/bioinformatics/btq491. PMC   2951094 . PMID   20739309.