Holographic interference microscopy

Last updated

Holographic interference microscopy (HIM) is holographic interferometry applied for microscopy for visualization of phase micro-objects. Phase micro-objects are invisible because they do not change intensity of light, they insert only invisible phase shifts. The holographic interference microscopy distinguishes itself from other microscopy methods by using a hologram and the interference for converting invisible phase shifts into intensity changes.

Contents

Other microscopy methods related to holographic interference microscopy are phase contrast microscopy and holographic interferometry.

Holographic interference microscopy methods

Holography was born as "new microscopy principle". D. Gabor invented holography for electron microscopy. For some reasons his idea is not applied in this branch of microscopy. But invention of holography opened up new possibilities in imaging of phase micro-objects due to the application of the holographic interference methods in microscopy that allow not only qualitative, but quantitative study. Combining the holographic interference microscopy with methods of numerical processing has solved the problem of 3D imaging of untreated, native biological phase micro-object. [1] [2] [3]

In the holographic interference method the images appear as the result of the interference of two object waves passed the same path through the microscope optical system but in different points of time: the reconstructed from the hologram "empty" object wave, and the object wave disturbed by the phase micro-objects under study. The hologram of the "empty" object wave is recorded using a reference beam, and it is used as an optical element of the holographic interference microscope. In the dependence on conditions of the interference two methods of the holographic interference microscopy can be realized: the holographic phase-contrast method and the holographic interference-contrast method. In the first case, the phase shifts inserted by the phase micro-object into the light wave passing through it are converted into intensity changes in its image; and in the second case – into deviations of interference fringes.

Holographic phase-contrast method

Holographic phase-contrast method is the holographic interference microscopy technique for phase micro-object visualization that converts the phase shifts inserted by the micro-object to the wave of light passed through it into intensity changes in the image. The method is based on the holographic addition (constructive interference) or holographic subtraction (destructive interference) of the "empty" wave reconstructed from the hologram, and the object wave disturbed by the phase micro-objects under study. The image can be considered as interferogram in interference fringes of infinite width.

Phase-contrast image of human blood erythrocytes obtained by the wave addition in a bright interference fringe Human blood erythrocytes.jpg
Phase-contrast image of human blood erythrocytes obtained by the wave addition in a bright interference fringe

The method solves the same problem as does F. Zernike phase contrast method. But in comparison with F. Zernike phase contrast method, the method has some advantages. Due to equal intensities of the interfering waves, the holographic phase-contrast method allows obtaining maximal contrast of images. The sizes of the micro-object do not restrict the application of the method, though F. Zernike phase contrast method works the more successfully, the smaller the micro-object in thick and sizes. The image in the holographic phase-contrast method is the result of interaction of two identical waves, and it is free of aberrations.

The method can be realized as the method of holographic addition and subtraction in an interference fringe. A small angle is introduced between the interfering waves so that the period of resulting system of interference fringes significantly exceeds the size of the images. The conditions for the waves to be antiphased or in-phased (holographic subtraction or addition) are automatically created within a dark and bright interference fringes, correspondingly.

The intensities in the image of the micro-object and the intensity of the background in the case of wave addition in a bright interference fringe are determined by the expressions:

;

and the intensities in the image of the micro-object and the intensity of the background in the case of wave subtraction in the dark interference fringe (waves are antiphased):

;

where is the phase shift inserted by the micro-object into the wave transmitted through it; is the intensity of each of the two waves. So, dark images of phase micro-objects can be observed against the bright background in the case of wave addition, and bright images against the dark background – in the case of wave subtraction. The contrast of images is maximal.

The intensity distribution in the images depends on the phase shifts inserted by the micro-objects under study. So, the method allows measuring the phase shifts, and 3D images of the phase micro-objects can be reconstructed under computer processing of their phase-contrast images.

The high sensitivity to vibrations is the main backgrounds of the method. It requires developing the hologram in its place. So, the method remains "exotic", and it is not widely applied.

Holographic interference-contrast method

An interferogram of blood erythrocyte Interferogram of blood erythrocyte.jpg
An interferogram of blood erythrocyte

Holographic interference-contrast method is the holographic interference microscopy technique for phase micro-object visualization that converts the phase shifts inserted by the micro-object to the passed light wave light into deviations of interference fringes in its image. A certain angle is introduced between the "empty" wave and the wave disturbed by the phase micro-objects so the system of straight interference fringes is obtained, which are deviated in the image of the micro-object. The image can be considered as an interferogram in the fringes of finite width. The deviation of the interference fringe in a point of the image is linearly dependent on the phase shift inserted in the corresponding point of the micro-object:

,

where is the set period of the system of interference fringes. So, the interference-contrast image (interferogram) visualizes phase silhouette of the micro-object in the form of the deviated lines; and the phase shifts can be measured just by a "ruler". This makes it possible to calculate optical thickness of the micro-object in every point. The method allows measuring thickness of the micro-object if its refractive index is known or to measure its refractive index if the thickness is known. If the micro-object has a homogeneous refractive index distribution, it is possible to reconstruct its physical 3D shape under digital processing the images.

The method can be used for thick and thin, small and large micro-objects. Due to equal intensities of the interfering waves, contrast of images is maximal. The "empty" wave reconstructed from the hologram is a replica of the object wave. So, due to interference of identical waves optical aberrations of the optical system are compensated, and images are free of optical aberrations.

Both methods of holographic interference microscopy can be realized in a single device of the holographic interference microscope uses an optical microscope in an off-axis conventional holographic set-up, with the reference wave, which is usual for the holography, a laser as a coherent source of light, and the hologram. The "empty" object wave produced by the objective in the absence of the micro-objects under study is recorded on the hologram using the reference wave. The developed hologram is returned in its original position, and it works as a fixed optical element of the holographic interference microscope. The images appear under simultaneous observation of the real object wave disturbed by micro-object and the "empty" object wave reconstructed from the hologram. The period of the observed interference picture is adjusted just by cross shift of the hologram from its initial position.

The main background of the HIM methods are coherent noise and speckle structure of the images appearing as the result of using a coherent source of light.

The methods of holographic interference microscopy were worked out and applied for phase micro-object study in the 1980s. [4] [5] [6] [7] [8]

In the late 1990s, a computer began to be used for 3D imaging of phase micro-objects by their interferograms. 3D images were obtained for the first time when investigating blood erythrocytes. [9] From the beginning of the 21st century, holographic interference microscopy has become digital holographic interference microscopy.

Digital holographic interference microscopy

Digital holographic interference microscopy (DHIM) is a combination of the holographic interference microscopy with digital methods of image processing for 3D imaging of phase micro-objects. The holographic phase-contrast or interference-contrast images (interferograms) are recorded by a digital camera from which a computer reconstructs 3D images by using numerical algorithms.

The closest method to the digital holographic interference microscopy is the digital holographic microscopy. The both method solve the same problem of micro-object 3D imaging. Both method use the reference wave to obtain phase information. The digital holographic interference microscopy is more "optical" method. This makes this method more obvious and precise, it uses clear and simple numerical algorithms. The digital holographic microscopy is more "digital" method. It is not so obvious; application of complicated approximate numerical algorithms does not allow reaching the optical accuracy.

3D image of a native human blood smear 3D Image Human blood smear.jpg
3D image of a native human blood smear

Digital holographic interference microscopy allows 3D imaging and non-invasive quantitative study of biomedical micro-objects, such as cells of an organism. The method has been successfully used for study of 3D morphology of blood erythrocytes in different diseases; [10] [11] [12] [13] to study how ozone therapy affects the shape of erythrocytes, [14] to study alteration of 3D shape of blood erythrocytes in a patient with sickle-cell anemia when the oxygen concentration in blood was reduced, and the effect of gamma-radiation in a superlethal dose on the shape of rat erythrocytes. [15]

The method can be used for measurements of thickness of thin transparent films, crystals, and/or 3D imaging of their surfaces for quality control. [16] [17] [18]

See also

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Holography</span> Recording to reproduce a three-dimensional light field

Holography is a technique that enables a wavefront to be recorded and later re-constructed. Holography is best known as a method of generating real three-dimensional images, but it also has a wide range of other applications. In principle, it is possible to make a hologram for any type of wave.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, remote sensing, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

<span class="mw-page-title-main">Mach–Zehnder interferometer</span>

The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons had been demonstrated as well in multiple experiments.

<span class="mw-page-title-main">Point spread function</span>

The point spread function (PSF) describes the response of a focused optical imaging system to a point source or point object. A more general term for the PSF is the system's impulse response; the PSF is the impulse response or impulse response function (IRF) of a focused optical imaging system. The PSF in many contexts can be thought of as the extended blob in an image that represents a single point object, that is considered as a spatial impulse. In functional terms, it is the spatial domain version of the optical transfer function (OTF) of an imaging system. It is a useful concept in Fourier optics, astronomical imaging, medical imaging, electron microscopy and other imaging techniques such as 3D microscopy and fluorescence microscopy.

Phase-contrast imaging is a method of imaging that has a range of different applications. It measures differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In transmission electron microscopy (TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart.

<span class="mw-page-title-main">High-resolution transmission electron microscopy</span>

High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp2-bonded carbon. While this term is often also used to refer to high resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, in analogy to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy. At present, the highest point resolution realised in phase contrast transmission electron microscopy is around 0.5 ångströms (0.050 nm). At these small scales, individual atoms of a crystal and its defects can be resolved. For 3-dimensional crystals, it may be necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron crystallography.

Electron holography is holography with electron waves. Dennis Gabor invented holography in 1948 when he tried to improve resolution in electron microscope. The first attempts to perform holography with electron waves were made by Haine and Mulvey in 1952; they recorded holograms of zinc oxide crystals with 60 keV electrons, demonstrating reconstructions with approximately 1 nm resolution. In 1955, G. Möllenstedt and H. Düker invented an electron biprism. thus enabling the recording of electron holograms in off-axis scheme. There are many different possible configurations for electron holography, with more than 20 documented in 1992 by Cowley. Usually, high spatial and temporal coherence of the electron beam are required to perform holographic measurements.

Holographic interferometry (HI) is a technique which enables static and dynamic displacements of objects with optically rough surfaces to be measured to optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

<span class="mw-page-title-main">Phase-contrast microscopy</span> Optical microscopy technique

Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations.

Computer-generated holography (CGH) is the method of digitally generating holographic interference patterns. A holographic image can be generated e.g. by digitally computing a holographic interference pattern and printing it onto a mask or film for subsequent illumination by suitable coherent light source.

Interferometric microscopy or imaging interferometric microscopy is the concept of microscopy which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. Interferometric microscopy allows enhancement of resolution of optical microscopy due to interferometric (holographic) registration of several partial images and the numerical combining.

<span class="mw-page-title-main">White light scanner</span>

A white light scanner (WLS) is a device for performing surface height measurements of an object using coherence scanning interferometry (CSI) with spectrally-broadband, "white light" illumination. Different configurations of scanning interferometer may be used to measure macroscopic objects with surface profiles measuring in the centimeter range, to microscopic objects with surface profiles measuring in the micrometer range. For large-scale non-interferometric measurement systems, see structured-light 3D scanner.

<span class="mw-page-title-main">Digital holographic microscopy</span>

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

<span class="mw-page-title-main">Quantitative phase-contrast microscopy</span>

Quantitative phase contrast microscopy or quantitative phase imaging are the collective names for a group of microscopy methods that quantify the phase shift that occurs when light waves pass through a more optically dense object.

<span class="mw-page-title-main">Live-cell imaging</span> Study of living cells using time-lapse microscopy

Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. Live-cell imaging was pioneered in the first decade of the 21st century. One of the first time-lapse microcinematographic films of cells ever made was made by Julius Ries, showing the fertilization and development of the sea urchin egg. Since then, several microscopy methods have been developed to study living cells in greater detail with less effort. A newer type of imaging using quantum dots have been used, as they are shown to be more stable. The development of holotomographic microscopy has disregarded phototoxicity and other staining-derived disadvantages by implementing digital staining based on cells’ refractive index.

Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.

References

  1. Tishko,T. V., Titar, V. P., Tishko, D. N.(2005). "Holographic methods of three-dimensional visualization of microscopic phase objects" .J. Opt. Technol., 72(2): 203–209.
  2. Holographic microscopy of phase microscopic objects. Theory and practice. by Tatyana Tishko, Tishko Dmitry, Titar Vladimir, World Scientific (2010). ISBN   978-981-4289-54-2
  3. Tishko,T. V., Tishko, D. N., Titar, V. P., "3D imaging of phase microscopic objects by digital holographic method" In: Duke EH, Aquirre SR. "3D Imaging: Theory, Technology and Application", New York, NY: Nova Publishers (2010):51–92. ISBN   978-1-60876-885-1.
  4. Safronov, G.S., Tishko, T.V. (1985)."Obtaining contrast images of phase microscopic objects by wavefronts summing". Ukrainsk. Fizich. Zh., 30:334–337(in Russian)
  5. Safronov, G.S., Tishko, T.V. (1985). "Holographic interferometry of phase microscopic objects'. Ukrainsk. Fizich. Zh., 30:994–997(in Russian).
  6. Safronov, G.S., Tishko, T.V. (1987). "Phase-contrast Holographic Microscope". Prib. Tech. Eksp, 2:249.
  7. Holographic Measurements by Ginsburg, V.M., Stepanov, B.M., Radio I Svyas, Moscow, Ru. (1981).
  8. Advanced Light Microscopy by Pluta M., Elsevier, New York, (1988).
  9. Tishko, T. V., Titar, V. P., Panfilov, D. A., Tishko, D. N. (1998)."Application of the holographic interferometry method for determination of shapes of human blood erythrocytes". Vestn. Khark .Nats. Univ., Ser Biol. Vestnik., 2 (1):107–111 (in Russian).
  10. Theory and practice of erythrocyte microscopy by Novitsky, V.V., Ryazantzeva, N.V., Stepovaya, E.A., Shevtzova, N.M., Miller, A.A., Zaitzev, B.N., Tishko, T.V., Titar, V.P., Tishko, D.N., Pechatnaya . Manufactura, Tomsk (Ru) (2008)
  11. Tishko, T.V.,Tishko, D.N., Titar, V.P. Application of the digital holographic interference microscopy for study of 3D morphology of human blood erythrocytesIn: "Current microscopy contributions to advances in science and technology" by Antonio Mendez-Vilas, Formatex Research Center, 2:729–736(2012), ISBN   978-84-939843-5-9.
  12. Tishko, T.V., Titar, V.P., Tishko, D.N., Nosov, K.V. (2008)."Digital holographic interference microscopy in the study of 3D morphology and functionality of human blood erythrocytes", Laser Physics, 18(4):1–5.
  13. Tishko, T.V. Tishko, D.N., Titar, V.P. (2009) "Blood cell imaging by holographic method", Imaging and microscopy, 2:46–49.
  14. Tishko, T.V., Titar, V.P., Barchotkina, T.M., Tishko D.N. (2004). "Application of the holographic interference microscope for investigation of ozone therapy influence on blood erythrocytes of patients in vivo" SPIE, 5582:119–123
  15. Tishko, T.V., Titar, V.P., Tishko, D.N. (2008). "3D morphology of blood erythrocytes by the method of digital holographic interference microscopy", SPIE, 7006: 70060O-70060O-9.
  16. Tishko, D.N., Tishko, T.V., Titar, V.P (2009)."Using digital holographic microscopy to study transparent thin films". J. Opt. Technol,76(3):147–149.
  17. Tishko, D.N., Tishko, T.V., Titar, V.P (2010)."Application of the Digital Holographic Interference Microscopy for Thin Transparent Films Investigation". Practical metallography,12:.719-731.
  18. Tishko, T.V., Tishko, D.N., Titar, V.P (2012)."Combining the polarization-contrast and interference-contrast methods for three dimensional visualization of anisotropic microobjects". J. Opt. Technol, 79(6):340–343.