Digital holographic microscopy

Last updated
Chemical-etching measured in real-time Chemical Etching measured with digital holographic microscopy.gif
Chemical-etching measured in real-time
Figure 1. DHM phase shift image of cell details. DHM-CellDetails.jpg
Figure 1. DHM phase shift image of cell details.
Surface finish measurement Surface finish measured using digital holographic microscopy.png
Surface finish measurement

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

Contents

Holography was invented by Dennis Gabor to improve electron microscopy. [1] Nevertheless, it never found many concrete and industrial applications in this field.

Actually, DHM has mostly been applied to light microscopy. In this field, it has shown unique applications for 3D characterization of technical samples and enables quantitative characterization of living cells. In materials science, DHM is routinely used for research in academic and industrial labs. Depending on the application, microscopes can be configured for both transmission and reflection purposes. DHM is a unique solution for 4D (3D + time) characterization of technical samples, when information needs to be acquired over a short time interval. It is the case for measurements in noisy environments, in presence of vibrations, when the samples move, or when the shape of samples change due to external stimuli, such as mechanical, electrical, or magnetic forces, chemical erosion or deposition and evaporation. In life sciences, DHM is usually configured in transmission mode. This enables label-free quantitative phase measurement (QPM), also called quantitative phase imaging (QPI), of living cells. Measurements do not affect the cells, enabling long-term studies. It provides information that can be interpreted into many underlying biological processes as explained in the section "Living cells imaging" below.

Working principle

Figure 2. Typical optical setup of DHM. OpticalSetupDHM.jpg
Figure 2. Typical optical setup of DHM.

To create the necessary interference pattern, i.e., the hologram, the illumination needs to be a coherent (monochromatic) light source, a laser for example. As can be seen in Figure 2, the laser light is split into an object beam and a reference beam. The expanded object beam illuminates the sample to create the object wave front. After the object wave front is collected by a microscope objective, the object and reference wave fronts are joined by a beam splitter to interfere and create the hologram. Using the digitally recorded hologram, a computer acts as a digital lens and calculates a viewable image of the object wave front by using a numerical reconstruction algorithm.

Commonly, a microscope objective is used to collect the object wave front. However, as the microscope objective is only used to collect light and not to form an image, it may be replaced by a simple lens. If a slightly lower optical resolution is acceptable, the microscope objective may be entirely removed.

Digital holography comes in different flavors, such as off-axis Fresnel, Fourier, image plane, in-line, Gabor and phase-shifting digital holography, [2] depending on the optical setup. The basic principle, however, is the same; a hologram is recorded and an image is reconstructed by a computer.

The lateral optical resolution of digital holographic microscopy is equivalent to the resolution of traditional light microscopy. DHM is diffraction-limited by the numerical aperture, in the same way as traditional light microscopy. However, DHM offers a superb axial (depth) resolution. An axial accuracy of approximately 5 nm has been reported. [3]

Advantages

Figure 3. Comparison of a DHM phase shift image (left) and a phase-contrast microscopy image (right). Phase-Phase Contrast.jpg
Figure 3. Comparison of a DHM phase shift image (left) and a phase-contrast microscopy image (right).

Phase shift images
Besides the ordinary bright-field image, a phase shift image is created as well. The phase shift image is unique for digital holographic microscopy and gives quantifiable information about optical distance. In reflection DHM, the phase shift image forms a topography image of the object.

Transparent objects, like living biological cells, are traditionally viewed in a phase-contrast microscope or in a differential interference contrast microscope. These methods visualize phase shifting transparent objects by distorting the bright field image with phase shift information. Instead of distorting the bright field image, transmission DHM creates a separate phase shift image showing the optical thickness of the object. Digital holographic microscopy thus makes it possible to visualize and quantify transparent objects and is therefore also referred to as quantitative phase-contrast microscopy.

Traditional phase contrast or bright field images of living unstained biological cells, Figure 3 (right), have proved themselves to be very difficult to analyze with image analysis software. On the contrary, phase shift images, Figure 3 (left), are readily segmented and analyzed by image analysis software based on mathematical morphology, such as CellProfiler. [4]

3-dimensional information
An object image is calculated at a given focal distance. However, as the recorded hologram contains all the necessary object wave front information, it is possible to calculate the object at any focal plane by changing the focal distance parameter in the reconstruction algorithm. In fact, the hologram contains all the information needed to calculate a complete image stack. In a DHM system, where the object wave front is recorded from multiple angles, it is possible to fully characterize the optical characteristics of the object and create tomography images of the object. [5] [6]

Digital autofocus
Conventional autofocus is achieved by vertically changing the focal distance until a focused image plane is found. As the complete stack of image planes may be calculated from a single hologram, it is possible to use any passive autofocus method to digitally select the focal plane. [7] The digital auto focusing capabilities of digital holography opens up the possibility to scan and image surfaces extremely rapidly, without any vertical mechanical movement. By recording a single hologram and afterwards stitch sub-images together that are calculated at different focal planes, a complete and focused image of the object may be created. [8]

Optical aberration correction
As DHM systems do not have an image forming lens, traditional optical aberrations do not apply to DHM. Optical aberrations are "corrected" by design of the reconstruction algorithm. A reconstruction algorithm that truly models the optical setup will not suffer from optical aberrations. [9] [10]

Low cost
In optical microscopy systems, optical aberrations are traditionally corrected by combining lenses into a complex and costly image forming microscope objective. Furthermore, the narrow focal depth at high magnifications requires precision mechanics. The needed components for a DHM system are inexpensive optics and semiconductor components, such as a laser diode and an image sensor. The low component cost in combination with the auto focusing capabilities of DHM, make it possible to manufacture DHM systems for a very low cost. [11] [12]

Applications

Figure 4. DHM phase shift image of human red blood cells. DHM image of human red blood cells.jpg
Figure 4. DHM phase shift image of human red blood cells.

Digital holographic microscopy has been successfully applied in a range of application areas. [13]

Living cells imaging

However, due to DHM's capability of non-invasively visualizing and quantifying biological tissue, bio-medical applications have received most attention. [14] Examples of bio-medical applications are:

Figure 5. Time-lapse of unstained, dividing and migrating cells. DHM-CellTimeLapse.gif
Figure 5. Time-lapse of unstained, dividing and migrating cells.

Surface 3D topography

DHM performs static measurements of 3D surface topography as many other 3D optical profilometers (white light interferometers, confocal, focus variation, ... ). It enables to retrieve, roughness and shape of many surfaces. [32] [33] [34] Use of multiple wavelengths enable to overcome the l/4 limit of traditional phase shifting interferometers. Applications have been demonstrated on many samples such as medical implants, watch components, micro components, micro-optics. [35]

Time resolved applications

Self-healing surface recovering from a scratch : real-time measurement Self-Healing-Polymer-DHM-Digital-Holographic-Microscopy-lyncee-Tosoh-Corporation.gif
Self-healing surface recovering from a scratch : real-time measurement

As DHM measures the 3D surface topography over the full field of view within a single camera acquisition, there is no need for scanning, neither vertical, nor lateral. Consequently, dynamic changes of topography are measured instantaneously. The acquisition rate is only limited by the camera frame. Measurements have been demonstrated on many types of samples such as smart surface, self-healing surfaces, not equilibrium systems, evaporation processes, electrodeposition, evaporation, crystallization, mechanical deformation, etc. [36] [37]

MEMS

Ultrasonic Transducers measured at 8 MHz in stroboscopic mode Ultrasonic-Transducers-MUT-IPMS-Digital-Holographic-Microscopy.gif
Ultrasonic Transducers measured at 8 MHz in stroboscopic mode

Use in conjunction with a stroboscopic electronic unit to synchronize the laser pulse for sample illumination and the camera acquisition with the MEMS excitation, DHM® provides time sequences of 3D topography along the excitation phase of the microsystems. Analysis of this time sequence of 3D topographies acquired at a fixed frequency provides vibration map and enable decomposition of the movement in term of in- and out-of-plane. [38]

Sweeping of the excitation frequency provides structural resonances as well as amplitude and phase Bode analysis. [39] Measurement have demonstrated on many type of MEMS such as comb drive actuators, micro-mirrors, accelerometers, gyroscopes, micro pumps, microphones, ultrasonic transducers, cantilevers, and surface acoustic waves among others. [40] [41] [42] [43] [44] [45] [46]

Metrology

DHM refers only to wavelengths for height measurement. Therefore, DHM provides precise height measurements with very high repeatability and linearity independently of any vertical calibration, precise positioning of mechanical part, repeatability of interferometric piezo-controller, motorized displacement, or liquid crystal display scanning. This feature makes out of DHM an outstanding tool for step and roughness certification among other. For transmission systems, perfect flatness calibration is achieved by taking as reference an acquisition without any sample in the optical path. Flatness calibration of reflection type systems requires the use of a perfectly flat sample. [47]

Industrial inspection

Automatic measurement of hip prosthesis : surface roughness characterization Digital Holographic Microscopy for measuring hip prosthesis roughness.png
Automatic measurement of hip prosthesis : surface roughness characterization

The very short time needed to capture information makes DHM very robust to environmental vibrations. It enables in particular “on-flight” and “on-line” quality controls of parts. Applications have been demonstrated in particular for implants roughness, structure of semiconductor components, solar industry, industrial metrology, and watch parts, among others. [48] [49]

Micro optics

Micro optics arrays fast measurement and inspection have been demonstrated and compared successfully with measurement made with other profilometers. [50] [51] [52] [53] [54] [55] [56] [57] [58]

Extended depth of focus algorithms based on digital focalization enables have a sharp focus over the full lens surface, even for high NA samples. [59] DHM has been also applied to dynamical characterization of variable lenses. [53]

3D particle tracking

3D particle tracking has been demonstrated in numerous publications [to be completed]. A Z-stack of measurement can be reconstructed digitally from a single hologram using a range of propagation distances. Specific algorithms enable to determine for each particle the distance corresponding to its best focus. Performing this operation on a time-sequence of holograms enables to determine the trajectories of particles.

History

The first reports of replacing the photographic hologram of classical holography by digitally recording the hologram and numerically reconstructing the image in a computer were published in the late 1960s [60] and in the early 1970s. [61] [62] Similar ideas were proposed for the electron microscope in the early 1980s. [63] But, computers were too slow and recording capabilities were too poor for digital holography to be useful in practice. After the initial excitement, digital holography went into a similar hibernation as holography had experienced about two decades earlier. (Note that in the 1960s, "digital holography" could mean either to compute an image from a hologram or to compute a hologram from a 3D model. The latter developed in parallel with classical holography during the hiatus, and during that time, "digital holography" was synonymous with what is now known as computer generated holography.)

In the mid-1990s, digital image sensors and computers had become powerful enough to reconstruct images with some quality, [64] but still lacked the required pixel count and density for digital holography to be anything more than a curiosity. At the time, the market driving digital image sensors was primarily low-resolution video, and so those sensors provided only PAL, NTSC, or SECAM resolution. This suddenly changed at the beginning of the 21st century with the introduction of digital still image cameras, which drove demand for inexpensive high-pixel-count sensors. As of 2010, affordable image sensors can have up to 60 megapixels. In addition, the CD and DVD-player market has driven development of affordable diode lasers and optics.

The first reports of using digital holography for light microscopy came in the mid-1990s. [65] [66] However, it was not until the early 2000s that image sensor technology had progressed far enough to allow images of a reasonable quality. During this time, the first commercial digital holographic microscopy companies were founded. With increased computing power and use of inexpensive high-resolution sensors and lasers, digital holographic microscopy is today finding applications primarily within life science, oceanology and metrology.

See also

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Holography</span> Recording to reproduce a three-dimensional light field

Holography is a technique that enables a wavefront to be recorded and later reconstructed. It is best known as a method of generating real three-dimensional images, but also has a wide range of other applications. In principle, it is possible to make a hologram for any type of wave.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

<span class="mw-page-title-main">Optical coherence tomography</span> Imaging technique

Optical coherence tomography (OCT) is an imaging technique that uses interferometry with short-coherence-length light to obtain micrometer-level depth resolution and uses transverse scanning of the light beam to form two- and three-dimensional images from light reflected from within biological tissue or other scattering media. Short-coherence-length light can be obtained using a superluminescent diode (SLD) with a broad spectral bandwidth or a broadly tunable laser with narrow linewidth. The first demonstration of OCT imaging was published by a team from MIT and Harvard Medical School in a 1991 article in the journal Science. The article introduced the term “OCT” to credit its derivation from optical coherence-domain reflectometry, in which the axial resolution is based on temporal coherence. The first demonstrations of in vivo OCT imaging quickly followed.

Holonomic brain theory is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. Holonomic refers to representations in a Hilbert phase space defined by both spectral and space-time coordinates. Holonomic brain theory is opposed by traditional neuroscience, which investigates the brain's behavior by looking at patterns of neurons and the surrounding chemistry.

Holographic interferometry (HI) is a technique which enables static and dynamic displacements of objects with optically rough surfaces to be measured to optical interferometric precision. These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

<span class="mw-page-title-main">Phase-contrast microscopy</span> Optical microscopy technique

Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations.

Phased-array optics is the technology of controlling the phase and amplitude of light waves transmitting, reflecting, or captured (received) by a two-dimensional surface using adjustable surface elements. An optical phased array (OPA) is the optical analog of a radio-wave phased array. By dynamically controlling the optical properties of a surface on a microscopic scale, it is possible to steer the direction of light beams, or the view direction of sensors, without any moving parts. Phased-array beam steering is used for optical switching and multiplexing in optoelectronic devices and for aiming laser beams on a macroscopic scale.

Computer-generated holography (CGH) is the method of digitally generating holographic interference patterns. A holographic image can be generated e.g., by digitally computing a holographic interference pattern and printing it onto a mask or film for subsequent illumination by suitable coherent light source.

<span class="mw-page-title-main">Bruce J. Tromberg</span> American chemist

Bruce J. Tromberg is an American photochemist and a leading researcher in the field of biophotonics. He is the director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) within the National Institutes of Health (NIH). Before joining NIH, he was Professor of Biomedical Engineering at The Henry Samueli School of Engineering and of Surgery at the School of Medicine, University of California, Irvine. He was the principal investigator of the Laser Microbeam and Medical Program (LAMMP), and the Director of the Beckman Laser Institute and Medical Clinic at Irvine. He was a co-leader of the Onco-imaging and Biotechnology Program of the NCI Chao Family Comprehensive Cancer Center at Irvine.

Interferometric microscopy or imaging interferometric microscopy is the concept of microscopy which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. Interferometric microscopy allows enhancement of resolution of optical microscopy due to interferometric (holographic) registration of several partial images and the numerical combining.

<span class="mw-page-title-main">Yves Gentet</span> French engineer and artist (born 1965)

Yves Gentet is a French engineer and artist, known for the invention of a creative method of holograms in colour Ultimate and a 3D holographic printer Chimera.

A common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer. A common-path interferometer is generally more robust to environmental vibrations than a "double-path interferometer" such as the Michelson interferometer or the Mach–Zehnder interferometer. Although travelling along the same path, the reference and sample beams may travel along opposite directions, or they may travel along the same direction but with the same or different polarization.

Holographic interference microscopy (HIM) is holographic interferometry applied for microscopy for visualization of phase micro-objects. Phase micro-objects are invisible because they do not change intensity of light, they insert only invisible phase shifts. The holographic interference microscopy distinguishes itself from other microscopy methods by using a hologram and the interference for converting invisible phase shifts into intensity changes.

<span class="mw-page-title-main">Quantitative phase-contrast microscopy</span>

Quantitative phase contrast microscopy or quantitative phase imaging are the collective names for a group of microscopy methods that quantify the phase shift that occurs when light waves pass through a more optically dense object.

<span class="mw-page-title-main">Live-cell imaging</span> Study of living cells using time-lapse microscopy

Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. Live-cell imaging was pioneered in the first decade of the 21st century. One of the first time-lapse microcinematographic films of cells ever made was made by Julius Ries, showing the fertilization and development of the sea urchin egg. Since then, several microscopy methods have been developed to study living cells in greater detail with less effort. A newer type of imaging using quantum dots have been used, as they are shown to be more stable. The development of holotomographic microscopy has disregarded phototoxicity and other staining-derived disadvantages by implementing digital staining based on cells’ refractive index.

<span class="mw-page-title-main">Coherence scanning interferometry</span>

Coherence scanning interferometry (CSI) is any of a class of optical surface measurement methods wherein the localization of interference fringes during a scan of optical path length provides a means to determine surface characteristics such as topography, transparent film structure, and optical properties. CSI is currently the most common interference microscopy technique for areal surface topography measurement. The term "CSI" was adopted by the International Organization for Standardization (ISO).

Holotomography (HT) is a laser technique to measure the three-dimensional refractive index (RI) tomogram of a microscopic sample such as biological cells and tissues. Because the RI can serve as an intrinsic imaging contrast for transparent or phase objects, measurements of RI tomograms can provide label-free quantitative imaging of microscopic phase objects. In order to measure 3-D RI tomogram of samples, HT employs the principle of holographic imaging and inverse scattering. Typically, multiple 2D holographic images of a sample are measured at various illumination angles, employing the principle of interferometric imaging. Then, a 3D RI tomogram of the sample is reconstructed from these multiple 2D holographic images by inversely solving light scattering in the sample.

<span class="mw-page-title-main">Joseph Rosen (professor)</span> Israeli optoelectronics professor (born 1958)

Joseph Rosen is the Benjamin H. Swig Professor in Optoelectronics at the School of Electrical & Computer Engineering of Ben-Gurion University of the Negev, Israel.

References

  1. Martha R. McCartney; David J. Smith (2007). "Electron Holography: Phase Imaging with Nanometer Resolution". Annual Review of Materials Research . 37: 729–767. Bibcode:2007AnRMS..37..729M. doi:10.1146/annurev.matsci.37.052506.084219.
  2. Myung K. Kim (2010). "Principles and techniques of digital holographic microscopy". SPIE Reviews. 1: 018005. Bibcode:2010SPIER...1a8005K. doi: 10.1117/6.0000006 .
  3. Bjorn Kemper; Patrik Langehanenberg; Gert von Bally (2007). "Digital Holographic Microscopy: A New Method for Surface Analysis and Marker?Free Dynamic Life Cell Imaging" (PDF). Optik & Photonik (2): 41–44.
  4. 1 2 Jyrki Selinummi; Pekka Ruusuvuori; Irina Podolsky; Adrian Ozinsky; Elizabeth Gold; Olli Yli-Harja; Alan Aderem; Ilya Shmulevich (2009). Serrano-Gotarredona, Teresa (ed.). "Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images". PLOS ONE. 4 (10): e7497. Bibcode:2009PLoSO...4.7497S. doi: 10.1371/journal.pone.0007497 . PMC   2760782 . PMID   19847301.
  5. Florian Charrière; Nicolas Pavillon; Tristan Colomb; Christian Depeursinge; Thierry J. Heger; Edward A. D. Mitchell; Pierre Marquet; Benjamin Rappaz (2006). "Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba". Opt. Express. 14 (16): 7005–7013. Bibcode:2006OExpr..14.7005C. doi: 10.1364/OE.14.007005 . PMID   19529071.
  6. Yongjin Sung; Wonshik Choi; Christopher Fang-Yen; Kamran Badizadegan; Ramachandra R. Dasari; Michael S. Feld (2009). "Optical diffraction tomography for high resolution live cell imaging". Opt. Express. 17 (1): 266–277. Bibcode:2009OExpr..17..266S. doi:10.1364/OE.17.000266. PMC   2832333 . PMID   19129896.
  7. Frank Dubois; Cédric Schockaert; Natcaha Callens; Catherine Yourassowsky (2006). "Focus plane detection criteria in digital holography microscopy by amplitude analysis". Opt. Express. 14 (13): 5895–5908. Bibcode:2006OExpr..14.5895D. doi: 10.1364/OE.14.005895 . PMID   19516759.
  8. P. Ferraro; S. Grilli; D. Alfieri; S. De Nicola; A. Finizio; G. Pierattini; B. Javidi; G. Coppola; V. Striano (2005). "Extended focused image in microscopy by digital holography". Opt. Express. 13 (18): 6738–6749. Bibcode:2005OExpr..13.6738F. doi: 10.1364/OPEX.13.006738 . PMID   19498690.
  9. Alexander Stadelmaier; Jürgen H. Massig (2000). "Compensation of lens aberrations in digital holography". Opt. Lett. 25 (22): 1630–1632. Bibcode:2000OptL...25.1630S. doi:10.1364/OL.25.001630. PMID   18066297.
  10. T. Colomb; F. Montfort; J. Kühn; N. Aspert; E. Cuche; A. Marian; F. Charrière; S. Bourquin; P. Marquet; C. Depeursinge (2006). "Numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy". Journal of the Optical Society of America A . 23 (12): 3177–3190. Bibcode:2006JOSAA..23.3177C. doi:10.1364/JOSAA.23.003177. PMID   17106474.
  11. Aydogan Ozcan; Serhan Isikman; Onur Mudanyali; Derek Tseng; Ikbal Sencan (2010). "Lensfree on-chip holography facilitates novel microscopy applications". SPIE Newsroom. doi:10.1117/2.1201005.002947. PMC   3107039 . PMID   21643449.
  12. Myungjun Lee; Oguzhan Yaglidere; Aydogan Ozcan (2011). "Field-portable reflection and transmission microscopy based on lensless holography". Biomedical Optics Express. 2 (9): 2721–2730. doi:10.1364/BOE.2.002721. PMC   3184880 . PMID   21991559.
  13. Tristan Colomb; Pierre Marquet; Florian Charrière; Jonas Kühn; Pascal Jourdain; Christian Depeursinge; Benjamin Rappaz; Pierre Magistretti (2007). "Enhancing the performance of digital holographic microscopy". SPIE Newsroom. CiteSeerX   10.1.1.559.1421 . doi:10.1117/2.1200709.0872.
  14. Myung-K. Kim (2010). "Applications of Digital Holography in Biomedical Microscopy". J. Opt. Soc. Korea. 14 (2): 77–89. doi: 10.3807/JOSK.2010.14.2.077 .
  15. Daniel Carl; Björn Kemper; Günther Wernicke; Gert von Bally (2004). "Parameter-Optimized Digital Holographic Microscope for High-Resolution Living-Cell Analysis". Applied Optics. 43 (33): 6536–6544. Bibcode:2004ApOpt..43.6536C. doi:10.1364/AO.43.006536. PMID   15646774.
  16. 1 2 Mölder A; Sebesta M; Gustafsson M; Gisselson L; Wingren AG; Alm K. (2008). "Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography". J. Microsc. 232 (2): 240–247. doi:10.1111/j.1365-2818.2008.02095.x. hdl: 2043/6898 . PMID   19017223. S2CID   1995890.
  17. Kemper B; Carl D; Schnekenburger J; Bredebusch I; Schäfer M; Domschke W; von Bally G (2006). "Investigations on living pancreas tumor cells by digital holographic microscopy". J. Biomed. Opt. 11 (3): 034005. Bibcode:2006JBO....11c4005K. doi: 10.1117/1.2204609 . PMID   16822055.
  18. Kemmler M; Fratz M; Giel D; Saum N; Brandenburg A; Hoffman C (2007). "Noninvasive time-dependent cytometry monitoring by digital holography". J. Biomed. Opt. 12 (6): 064002. Bibcode:2007JBO....12f4002K. doi: 10.1117/1.2804926 . PMID   18163818. S2CID   40335328.
  19. Benjamin Rappaz; Elena Cano; Tristan Colomb; Jonas Kühn; Christian Depeursinge; Viesturs Simanis; Pierre J. Magistretti; Pierre Marquet (2009). "Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy" (PDF). J. Biomed. Opt. 14 (3): 034049. Bibcode:2009JBO....14c4049R. doi:10.1117/1.3147385. PMID   19566341. Archived from the original (PDF) on 2011-07-14. Retrieved 2010-10-09.
  20. Inkyu Moon; Bahram Javidi (2007). "Three-dimensional identification of stem cells by computational holographic imaging". J. R. Soc. Interface. 4 (13): 305–313. doi:10.1098/rsif.2006.0175. PMC   2359842 . PMID   17251147.
  21. Nicolas Pavillon; Alexander Benke; Daniel Boss; Corinne Moratal; Jonas Kühn; Pascal Jourdain; Christian Depeursinge; Pierre J. Magistretti; Pierre Marquet (2010). "Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy". Journal of Biophotonics. 3 (7): 432–436. doi:10.1002/jbio.201000018. PMID   20306502. S2CID   25323891.
  22. Gabriel Popescu; YoungKeun Park; Wonshik Choi; Ramachandra R. Dasari; Michael S. Feld; Kamran Badizadegan (2008). "Imaging red blood cell dynamics by quantitative phase microscopy" (PDF). Blood Cells, Molecules and Diseases. 41 (1): 10–16. doi:10.1016/j.bcmd.2008.01.010. PMC   2505336 . PMID   18387320. Archived from the original (PDF) on 2011-07-19. Retrieved 2010-10-06.
  23. Marquet P.; Rappaz B.; Barbul A.; Korenstein R.; Depeursinge C.; Magistretti P. (2009). Farkas, Daniel L; Nicolau, Dan V; Leif, Robert C (eds.). "Red blood cell structure and dynamics explored with digital holographic microscopy". Proc. SPIE. Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VII. 7182: 71821A. Bibcode:2009SPIE.7182E..1AM. doi:10.1117/12.809224. S2CID   85607975.
  24. Mustafa Mir; et al. (2011). "Blood testing at the single cell level using quantitative phase and amplitude microscopy". Biomedical Optics Express. 2 (12): 3259–3266. doi:10.1364/BOE.2.003259. PMC   3233245 . PMID   22162816.
  25. Mona Mihailescu; et al. (2011). "Automated imaging, identification, and counting of similar cells from digital hologram reconstructions". Appl. Opt. 50 (20): 3589–3597. Bibcode:2011ApOpt..50.3589M. doi:10.1364/AO.50.003589. PMID   21743570.
  26. Fook Chiong Cheong; Bo Sun; Rémi Dreyfus; Jesse Amato-Grill; Ke Xiao; Lisa Dixon; David G. Grier (2009). "Flow visualization and flow cytometry with holographic video microscopy". Optics Express. 17 (15): 13071–13079. Bibcode:2009OExpr..1713071C. doi: 10.1364/OE.17.013071 . PMID   19654712.
  27. Shigeru Murata; Norifumi Yasuda (2000). "Potential of digital holography in particle measurement". Opt. Laser Eng. 32 (7–8): 567–574. Bibcode:2000OptLT..32..567M. doi:10.1016/S0030-3992(00)00088-8.
  28. Emmanouil Darakis; Taslima Khanam; Arvind Rajendran; Vinay Kariwala; Thomas J. Naughton; Anand K. Asundi (2010). "Microparticle characterization using digital holography" (PDF). Chem. Eng. Sci. 65 (2): 1037–1044. Bibcode:2010ChEnS..65.1037D. doi:10.1016/j.ces.2009.09.057. hdl:10220/6495.
  29. Björn Kemper; Andreas Bauwens; Angelika Vollmer; Steffi Ketelhut; Patrik Langehanenberg (2010). "Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy". J. Biomed. Opt. 15 (3): 036009–036009–6. Bibcode:2010JBO....15c6009K. doi: 10.1117/1.3431712 . PMID   20615011.
  30. Johan Persson; Anna Mölder; Sven-Göran Pettersson; Kersti Alm (2010). "Cell motility studies using digital holographic microscopy" (PDF). In A. Méndez-Vilas and J. Díaz (ed.). Microscopy: Science, Technology, Applications and Education. Microscopy Series Nº 4. Vol. 2. FORMATEX. pp. 1063–1072.
  31. Kwan Jeong; John J. Turek; David D. Nolte (2007). "Fourier-domain digital holographic optical coherence imaging of living tissue". Appl. Opt. 46 (22): 4999–5008. Bibcode:2007ApOpt..46.4999J. CiteSeerX   10.1.1.705.8443 . doi:10.1364/AO.46.004999. PMID   17676107.
  32. P. Knotek; L. Tichy (2012). "On photo-expansion and microlens formation in (GeS2)0.74(Sb2S3)0.26 chalcogenide glass". Materials Research Bulletin. 47 (12): 4246–4251. doi:10.1016/j.materresbull.2012.09.024.
  33. P. Knotek; L. Tichy (2013). "Explosive boiling of Ge35Sb10S55 glass induced by a CW laser". Materials Research Bulletin. 48 (9): 3268–3273. doi:10.1016/j.materresbull.2013.05.031.
  34. B. Lenssen; Y. Bellouard (2012). "Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching". Applied Physics Letters. 101 (10): 103503–7. Bibcode:2012ApPhL.101j3503L. doi:10.1063/1.4750236.
  35. Jonas Kühn; Charrière Florian; Colomb Tristan; Montfort Frédéric; Cuche Etienne; Emery Yves; Marquet Pierre; Depeursinge Christian (2008). Gorecki, Christophe; Asundi, Anand K; Osten, Wolfgang (eds.). "Dual-wavelength digital holographic microscopy with sub-nanometer axial accuracy". Proc. SPIE. Optical Micro- and Nanometrology in Microsystems Technology II. 46995: 699503–12. Bibcode:2008SPIE.6995E..03K. doi:10.1117/12.781263. S2CID   111319462.
  36. E. Cuche; Y. Emery; F. Montfort (2009). "Microscopy: One-shot analysis". Nature Photonics. 3 (11): 633–635. Bibcode:2009NaPho...3..633C. doi:10.1038/nphoton.2009.207.
  37. T. Feser; P. Stoyanov; F. Mohr; M. Dienwiebel (2013). "The running-in mechanisms of binary brass studied by in-situ topography measurements". Wear. 303 (1–2): 465–472. doi:10.1016/j.wear.2013.03.047.
  38. Yves Emery; Aspert Nicolas; Marquet François (2012). "Dynamical Topography Measurements of MEMS up to 25 MHz, Through Transparent Window, and in Liquid by Digital Holographic Microscope (DHM)". AIP Conf. Proc. 1457 (1): 71–77. Bibcode:2012AIPC.1457...71E. doi:10.1063/1.4730544.
  39. Y. Emery; E. Solanas; N. Aspert; J. Parent; E. Cuche (2013). "Microscopy: MEMS and MOEMS resonant frequencies analysis by Digital Holography Microscopy (DHM)". Proc. SPIE. 8614: 86140A. doi:10.1117/12.2009221. S2CID   108646703.
  40. Umesh Kumar Bhaskar; Nirupam Banerjee; Amir Abdollahi; Zhe Wang; Darrell G. Schlom; Guus Rijnders; Gustau Catalan (2016). "A flexoelectric microelectromechanical system on silicon Microscopy (DHM)". Nature Nanotechnology. 11 (3): 263–266. Bibcode:2016NatNa..11..263B. doi:10.1038/nnano.2015.260. PMID   26571008.
  41. Holger Conrad; Harald Schenk; Bert Kaiser; Sergiu Langa; Matthieu Gaudet; Klaus Schimmanz; Michael Stolz; Miriam Lenz (2015). "A small-gap electrostatic micro-actuator for large deflections". Nature Nanotechnology. 6: 10078. Bibcode:2015NatCo...610078C. doi:10.1038/ncomms10078. PMC   4682043 . PMID   26655557.
  42. A. Conway; J. V. Osborn; J. D. Fowler (2007). "Stroboscopic Imaging Interferometer for MEMS Performance Measurement". Journal of Microelectromechanical Systems. 16 (3): 668–674. doi:10.1109/jmems.2007.896710. S2CID   31794823.
  43. Holger Conrad; Harald Schenk; Bert Kaiser; Sergiu Langa; Matthieu Gaudet; Klaus Schimmanz; Michael Stolz; Miriam Lenz (2015). "A small-gap electrostatic micro-actuator for large deflections". Nature Nanotechnology. 6: 10078. Bibcode:2015NatCo...610078C. doi:10.1038/ncomms10078. PMC   4682043 . PMID   26655557.
  44. Jonas Kühn; Colomb Tristan; Montfort Frédéric; Charrière Florian; Emery Yves; Cuche Etienne; Marquet Pierre; Depeursinge Christian (2007). Tutsch, Rainer; Zhao, Hong; Kurabayashi, Katsuo; Takaya, Yasuhiro; Tománek, Pavel (eds.). "Real-time dual-wavelength digital holographic microscopy for MEMS characterization". Proc. SPIE. Optomechatronic Sensors and Instrumentation III. 6716: 671608. Bibcode:2007SPIE.6716E..08K. doi:10.1117/12.754179. S2CID   122886772.
  45. F Montfort; Emery Y.; Marquet F.; Cuche E.; Aspert N.; Solanas E.; Mehdaoui A.; Ionescu A.; Depeursinge C. (2007). Hartzell, Allyson L; Ramesham, Rajeshuni (eds.). "Process engineering and failure analysis of MEMS and MOEMS by Digital Holography Microscopy (DHM)". Proceedings of SPIE. Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI. 6463: 64630G. Bibcode:2007SPIE.6463E..0GM. doi:10.1117/12.699837. S2CID   108576663.
  46. P. Psota; V. Ledl; R. Dolecek; J. Erhart; V. Kopecky (2012). "Measurement of piezoelectric transformer vibrations by digital holography". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 59 (9): 1962–1968. doi:10.1109/tuffc.2012.2414. PMID   23007768. S2CID   1340255.
  47. S. Korres; M. Dienwiebel (2010). "Design and construction of a novel tribometer with online topography and wear measurement". Review of Scientific Instruments. 81 (6): 063904–11. arXiv: 1003.1638 . Bibcode:2010RScI...81f3904K. doi:10.1063/1.3449334. PMID   20590249. S2CID   37616772.
  48. Yves Emery; Cuche E.; Marquet F.; Aspert N.; Marquet P.; Kühn J.; Botkine M.; Colomb T. (2005). Osten, Wolfgang; Gorecki, Christophe; Novak, Erik L (eds.). "Digital Holography Microscopy (DHM): Fast and robust systems for industrial inspection with interferometer resolution". Optical Measurement Systems for Industrial Inspection. Optical Measurement Systems for Industrial Inspection IV. 5856: 930–937. Bibcode:2005SPIE.5856..930E. doi:10.1117/12.612670. S2CID   110662403.
  49. Yves Emery; Cuche E.; Marquet F.; Cuche E.; Bourquin S.; Kuhn J.; Aspert N.; Botkin M.; Depeursinge C. (2006). "Digital Holographic Microscopy (DHM): Fast and robust 3D measurements with interferometric resolution for industrial inspection". Fringe 2005. 59 (9): 667–671.
  50. Andrew Holmes; James Pedder (2006). "Laser micromachining in 3D and large area applications". The Industrial Laser User. 45: 27–29.
  51. Andrew Holmes; James Pedder; Boehlen Karl (2006). Phipps, Claude R (ed.). "Advanced laser micromachining processes for MEMS and optical applications". Proc. SPIE. High-Power Laser Ablation VI. 6261: 62611E. Bibcode:2006SPIE.6261E..1EH. doi:10.1117/12.682929. S2CID   38050006.
  52. Audrey Champion; Yves Bellouard (2012). Heisterkamp, Alexander; Meunier, Michel; Nolte, Stefan (eds.). "Density variation in fused silica exposed to femtosecond laser". Proc. SPIE. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XII. 8247: 82470R. Bibcode:2012SPIE.8247E..0RC. doi:10.1117/12.907007. S2CID   122017601.
  53. 1 2 Pietro Ferraro; Wolfgang Osten (2006). "Digital holography and its application in MEMS/MOEMS inspection". Optical Inspection of Microsystems: 351–425.
  54. T. Kozacki; M. Józwik; R. Józwicki (2009). "Determination of optical field generated by a microlens using digital holographic method". Opto-Electronics Review. 17 (3): 211–216. Bibcode:2009OERv...17..211K. doi: 10.2478/s11772-009-0005-z .
  55. T. Kozacki; M. Józwik; J. Kostencka (2013). "Holographic method for topography measurement of highly tilted and high numerical aperture micro structures". Optics & Laser Technology. 49: 38–46. Bibcode:2013OptLT..49...38K. doi:10.1016/j.optlastec.2012.12.001.
  56. Tomasz Kozacki; Michal Józwik; Kamil Lizewski (2011). "High-numerical-aperture microlens shape measurement with digital holographic microscopy". Optics Letters. 36 (22): 4419–4421. Bibcode:2011OptL...36.4419K. doi:10.1364/ol.36.004419. PMID   22089583.
  57. F. Merola; L. Miccio; S. Coppola; M. Paturzo; S. Grilli; P. Ferraro (2011). "Exploring the capabilities of Digital Holography as tool for testing optical microstructures". 3D Research. 2 (1). Bibcode:2011TDR.....2....3M. doi:10.1007/3dres.01(2011)3. S2CID   121170457.
  58. Qu Weijuan; Chee Oi Choo; Yu Yingjie; Anand Asundi (2010). "Microlens characterization by digital holographic microscopy with physical spherical phase compensation". Applied Optics. 49 (33): 6448–6454. Bibcode:2010ApOpt..49.6448W. doi:10.1364/ao.49.006448. PMID   21102670.
  59. Tristan Colomb; Nicolas Pavillon; Jonas Kühn; Etienne Cuche; Christian Depeursinge; Yves Emery (2010). "Extended depth-of-focus by digital holographic microscopy". Optics Letters. 35 (11): 1840–1842. Bibcode:2010OptL...35.1840C. doi:10.1364/ol.35.001840. PMID   20517434.
  60. Goodman J. W.; Lawrence R. W. (1967). "Digital image formation from electronically detected holograms". Appl. Phys. Lett. 11 (3): 77–79. Bibcode:1967ApPhL..11...77G. doi:10.1063/1.1755043.
  61. Huang T. (1971). "Digital Holography". Proc. IEEE. 59 (9): 1335–1346. doi:10.1109/PROC.1971.8408.
  62. Kronrod M. A.; Merzlyakov N. S.; Yaroslavskii L. P. (1972). "Reconstruction of holograms with a computer". Sov. Phys. Tech. Phys. 17: 333–334. Bibcode:1972SPTP...17..333K.
  63. Cowley J. M; Walker D. J. (1981). "Reconstruction from in-line holograms by digital processing". Ultramicroscopy. 6: 71–76. doi:10.1016/S0304-3991(81)80179-9.
  64. Schnars U.; Jüptner W. (1994). "Direct recording of holograms by a CCD target and numerical reconstruction". Applied Optics. 33 (2): 179–181. Bibcode:1994ApOpt..33..179S. doi:10.1364/AO.33.000179. PMID   20862006.
  65. Cuche E.; Poscio P.; Depeursinge C. (1996). "Optical tomography at the microscopic scale by means of a numerical". Proc. SPIE. 2927: 61. doi:10.1117/12.260653. S2CID   120815437.
  66. Tong Zhang; Ichirou Yamaguchi (1998). "Three-dimensional microscopy with phase-shifting digital holography". Optics Letters. 23 (15): 1221–1223. Bibcode:1998OptL...23.1221Z. doi:10.1364/OL.23.001221. PMID   18087480.

Further reading

Books

Reviews

Feature issues