Homotopy colimit and limit

Last updated

In mathematics, especially in algebraic topology, the homotopy limit and colimit [1] pg 52 are variants of the notions of limit and colimit extended to the homotopy category . The main idea is this: if we have a diagram

Contents

considered as an object in the homotopy category of diagrams , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the cone and cocone

which are objects in the homotopy category , where is the category with one object and one morphism. Note this category is equivalent to the standard homotopy category since the latter homotopy functor category has functors which picks out an object in and a natural transformation corresponds to a continuous function of topological spaces. Note this construction can be generalized to model categories, which give techniques for constructing homotopy limits and colimits in terms of other homotopy categories, such as derived categories. Another perspective formalizing these kinds of constructions are derivators [2] pg 193 which are a new framework for homotopical algebra.

Introductory examples

Homotopy pushout

The concept of homotopy colimit [1] pg 4-8 is a generalization of homotopy pushouts, such as the mapping cylinder used to define a cofibration. This notion is motivated by the following observation: the (ordinary) pushout

is the space obtained by contracting the n-1-sphere (which is the boundary of the n-dimensional disk) to a single point. This space is homeomorphic to the n-sphere Sn. On the other hand, the pushout

is a point. Therefore, even though the (contractible) disk Dn was replaced by a point, (which is homotopy equivalent to the disk), the two pushouts are not homotopy (or weakly) equivalent.

Therefore, the pushout is not well-aligned with a principle of homotopy theory, which considers weakly equivalent spaces as carrying the same information: if one (or more) of the spaces used to form the pushout is replaced by a weakly equivalent space, the pushout is not guaranteed to stay weakly equivalent. The homotopy pushout rectifies this defect.

The homotopy pushout of two maps of topological spaces is defined as

,

i.e., instead of glueing B in both A and C, two copies of a cylinder on B are glued together and their ends are glued to A and C. For example, the homotopy colimit of the diagram (whose maps are projections)

is the join .

It can be shown that the homotopy pushout does not share the defect of the ordinary pushout: replacing A, B and / or C by a homotopic space, the homotopy pushout will also be homotopic. In this sense, the homotopy pushouts treats homotopic spaces as well as the (ordinary) pushout does with homeomorphic spaces.

Composition of maps

Another useful and motivating examples of a homotopy colimit is constructing models for the homotopy colimit of the diagram

of topological spaces. There are a number of ways to model this colimit: the first is to consider the space

where is the equivalence relation identifying

which can pictorially be described as the picture

Homotopy colimit A-X-Y.png

Because we can similarly interpret the diagram above as the commutative diagram, from properties of categories, we get a commutative diagram

Composition diagram of spaces.svg

giving a homotopy colimit. We could guess this looks like

Homotopy colimit composition not filled in.png

but notice we have introduced a new cycle to fill in the new data of the composition. This creates a technical problem which can be solved using simplicial techniques: giving a method for constructing a model for homotopy colimits. The new diagram, forming the homotopy colimit of the composition diagram pictorially is represented as

Homotopy colimit with composition filled in.png

giving another model of the homotopy colimit which is homotopy equivalent to the original diagram (without the composition of ) given above.

Mapping telescope

The homotopy colimit of a sequence of spaces

is the mapping telescope. [3] One example computation is taking the homotopy colimit of a sequence of cofibrations. The colimit of [1] pg 62 this diagram gives a homotopy colimit. This implies we could compute the homotopy colimit of any mapping telescope by replacing the maps with cofibrations.

General definition

Homotopy limit

Treating examples such as the mapping telescope and the homotopy pushout on an equal footing can be achieved by considering an I-diagram of spaces, where I is some "indexing" category. This is a functor

i.e., to each object i in I, one assigns a space Xi and maps between them, according to the maps in I. The category of such diagrams is denoted SpacesI.

There is a natural functor called the diagonal,

which sends any space X to the diagram which consists of X everywhere (and the identity of X as maps between them). In (ordinary) category theory, the right adjoint to this functor is the limit. The homotopy limit is defined by altering this situation: it is the right adjoint to

which sends a space X to the I-diagram which at some object i gives

Here I/i is the slice category (its objects are arrows ji, where j is any object of I), N is the nerve of this category and |-| is the topological realization of this simplicial set. [4]

Homotopy colimit

Similarly, one can define a colimit as the left adjoint to the diagonal functor Δ0 given above. To define a homotopy colimit, we must modify Δ0 in a different way. A homotopy colimit can be defined as the left adjoint to a functor Δ : SpacesSpacesI where

Δ(X)(i) = HomSpaces (|N(Iop /i)|, X),

where Iop is the opposite category of I. Although this is not the same as the functor Δ above, it does share the property that if the geometric realization of the nerve category (|N(-)|) is replaced with a point space, we recover the original functor Δ0.

Examples

A homotopy pullback (or homotopy fiber-product) is the dual concept of a homotopy pushout.It satisfies the universal property of a pullback up to homotopy.[ citation needed ] Concretely, given and , it can be constructed as

[5]

For example, the homotopy fiber of over a point y is the homotopy pullback of along . [5] The homotopy pullback of along the identity is nothing but the mapping path space of .

The universal property of a homotopy pullback yields the natural map , a special case of a natural map from a limit to a homotopy limit. In the case of a homotopy fiber, this map is an inclusion of a fiber to a homotopy fiber.

Construction of colimits with simplicial replacements

Given a small category and a diagram , we can construct the homotopy colimit using a simplicial replacement of the diagram. This is a simplicial space, given by the diagram [1] pg 16-17

Simplicial replacement of a diagram.svg

where

given by chains of composable maps in the indexing category . Then, the homotopy colimit of can be constructed as the geometric realization of this simplicial space, so

Notice that this agrees with the picture given above for the composition diagram of .

Relation to the (ordinary) colimit and limit

There is always a map

Typically, this map is not a weak equivalence. For example, the homotopy pushout encountered above always maps to the ordinary pushout. This map is not typically a weak equivalence, for example the join is not weakly equivalent to the pushout of , which is a point.

Further examples and applications

Just as limit is used to complete a ring, holim is used to complete a spectrum.

See also

Related Research Articles

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : ZX and g : ZY with a common domain. The pushout consists of an object P along with two morphisms XP and YP that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function between topological spaces and is the quotient

In mathematics, in particular homotopy theory, a continuous mapping between topological spaces

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen (1967).

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

In category theory, a discipline within mathematics, the nerveN(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the categoryC. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory.

In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan.

In category theory, a span, roof or correspondence is a generalization of the notion of relation between two objects of a category. When the category has all pullbacks, spans can be considered as morphisms in a category of fractions.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In algebraic topology, the nthsymmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References

  1. 1 2 3 4 Dugger, Daniel. "A Primer on Homotopy Colimits" (PDF). Archived (PDF) from the original on 3 Dec 2020.
  2. Grothendieck. "Pursuing Stacks". thescrivener.github.io. Archived (PDF) from the original on 30 Jul 2020. Retrieved 2020-09-17.
  3. Hatcher's Algebraic Topology, 4.G.
  4. Bousfield & Kan: Homotopy limits, Completions and Localizations, Springer, LNM 304. Section XI.3.3
  5. 1 2 Math 527 - Homotopy Theory Homotopy pullbacks

Further reading