Hopf bifurcation

Last updated
Complex eigenvalues of an arbitrary map (dots). In case of the Hopf bifurcation, two complex conjugate eigenvalues cross the imaginary axis. Hopfeigenvalues.png
Complex eigenvalues of an arbitrary map (dots). In case of the Hopf bifurcation, two complex conjugate eigenvalues cross the imaginary axis.

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. [1] More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

Contents

A Hopf bifurcation is also known as a PoincaréAndronovHopf bifurcation, named after Henri Poincaré, Aleksandr Andronov and Eberhard Hopf.

Overview

Supercritical and subcritical Hopf bifurcations

Dynamics of the Hopf bifurcation near
l
=
0
{\displaystyle \lambda =0}
. Possible trajectories in red, stable structures in dark blue and unstable structures in dashed light blue. Supercritical Hopf bifurcation: 1a) stable fixed point 1b) unstable fixed point, stable limit cycle 1c) phase space dynamics. Subcritical Hopf bifurcation: 2a) stable fixed point, unstable limit cycle 2b) unstable fixed point 2c) phase space dynamics.
o
{\displaystyle \omega }
determines the angular dynamics and therefore the direction of winding for the trajectories. Hopfbifurcation.png
Dynamics of the Hopf bifurcation near . Possible trajectories in red, stable structures in dark blue and unstable structures in dashed light blue. Supercritical Hopf bifurcation: 1a) stable fixed point 1b) unstable fixed point, stable limit cycle 1c) phase space dynamics. Subcritical Hopf bifurcation: 2a) stable fixed point, unstable limit cycle 2b) unstable fixed point 2c) phase space dynamics. determines the angular dynamics and therefore the direction of winding for the trajectories.

The limit cycle is orbitally stable if a specific quantity called the first Lyapunov coefficient is negative, and the bifurcation is supercritical. Otherwise it is unstable and the bifurcation is subcritical.

The normal form of a Hopf bifurcation is the following time-dependent differential equation:

where z, b are both complex and λ is a real parameter.

Write: The number α is called the first Lyapunov coefficient.

where
The bifurcation is then called supercritical.

Intuition

Normal form of the supercritical Hopf bifurcation in Cartesian coordinates. Supercritical Hopf bifurcation.gif
Normal form of the supercritical Hopf bifurcation in Cartesian coordinates.

The normal form of the supercritical Hopf bifurcation can be expressed intuitively in polar coordinates,

where is the instantaneous amplitude of the oscillation and is its instantaneous angular position. [3] The angular velocity is fixed. When , the differential equation for has an unstable fixed point at and a stable fixed point at . The system thus describes a stable circular limit cycle with radius and angular velocity . When then is the only fixed point and it is stable. In that case, the system describes a spiral that converges to the origin.

Cartesian coordinates

The polar coordinates can be transformed into Cartesian coordinates by writing and . [3] Differentiating and with respect to time yields the differential equations,

and

Subcritical case

The normal form of the subcritical Hopf is obtained by negating the sign of ,

which reverses the stability of the fixed points in . For the limit cycle is now unstable and the origin is stable.

Example

The Hopf bifurcation in the Selkov system (see article). As the parameters change, a limit cycle (in blue) appears out of a stable equilibrium. Hopf-bif.gif
The Hopf bifurcation in the Selkov system (see article). As the parameters change, a limit cycle (in blue) appears out of a stable equilibrium.

Hopf bifurcations occur in the Lotka–Volterra model of predator–prey interaction (known as paradox of enrichment), the Hodgkin–Huxley model for nerve membrane potential, [4] the Selkov model of glycolysis, [5] the Belousov–Zhabotinsky reaction, the Lorenz attractor, the Brusselator, and in classical electromagnetism. [6] Hopf bifurcations have also been shown to occur in fission waves. [7]

The Selkov model is

The figure shows a phase portrait illustrating the Hopf bifurcation in the Selkov model. [8]

In railway vehicle systems, Hopf bifurcation analysis is notably important. Conventionally a railway vehicle's stable motion at low speeds crosses over to unstable at high speeds. One aim of the nonlinear analysis of these systems is to perform an analytical investigation of bifurcation, nonlinear lateral stability and hunting behavior of rail vehicles on a tangent track, which uses the Bogoliubov method. [9]

Serial expansion method

[10]

Consider a system defined by , where is smooth and is a parameter. After a linear transform of parameters, we can assume that as increases from below zero to above zero, the origin turns from a spiral sink to a spiral source.

Now, for , we perform a perturbative expansion using two-timing:

where are functions of . By an argument with harmonic balance (see [10] for details), we can use . Then, plugging in to , and expanding up to the order, we would obtain three ordinary differential equations in .

The first equation would be of form , which gives the solution , where are "slowly varying terms" of . Plugging it into the second equation, we can solve for .

Then plugging into the third equation, we would have an equation of form , with the right-hand-side a sum of trigonometric terms. Of these terms, we must set the "resonance term" -- that is, -- to zero. This is the same idea as Poincaré–Lindstedt method. This then provides two ordinary differential equations for , allowing one to solve for the equilibrium value of , as well as its stability.

Example

Consider the system defined by and . The system has an equilibrium point at origin. When increases from negative to positive, the origin turns from a stable spiral point to an unstable spiral point.

First, we eliminate from the equations:

Now, perform the perturbative expansion as described above:

with . Expanding up to order , we obtain:

First equation has solution . Here are respectively the "slow-varying amplitude" and "slow-varying phase" of the simple oscillation.

Second equation has solution , where are also slow-varying amplitude and phase. Now, since , we can merge the two terms as some .

Thus, without loss of generality, we can assume . Thus

Plug into the third equation, we obtain

Eliminating the resonance terms, we obtain

The first equation shows that is a stable equilibrium. Thus we find that the Hopf bifurcation creates an attracting (rather than repelling) limit cycle. Plugging in , we have . We can repick the origin of time to make . Now solve for

yielding

Plugging in back to the expressions for , we have

Plugging them back to yields the serial expansion of as well, up to order .

Letting for notational neatness, we have

This provides us with a parametric equation for the limit cycle. This is plotted in the illustration on the right.

Definition of a Hopf bifurcation

The appearance or the disappearance of a periodic orbit through a local change in the stability properties of a fixed point is known as the Hopf bifurcation. The following theorem works for fixed points with one pair of conjugate nonzero purely imaginary eigenvalues. It tells the conditions under which this bifurcation phenomenon occurs.

Theorem (see section 11.2 of [11] ). Let be the Jacobian of a continuous parametric dynamical system evaluated at a steady point . Suppose that all eigenvalues of have negative real part except one conjugate nonzero purely imaginary pair . A Hopf bifurcation arises when these two eigenvalues cross the imaginary axis because of a variation of the system parameters.

RouthHurwitz criterion

RouthHurwitz criterion (section I.13 of [12] ) gives necessary conditions so that a Hopf bifurcation occurs. [13]

Sturm series

Let be Sturm series associated to a characteristic polynomial . They can be written in the form:

The coefficients for in correspond to what is called Hurwitz determinants. [13] Their definition is related to the associated Hurwitz matrix.

Propositions

Proposition 1. If all the Hurwitz determinants are positive, apart perhaps then the associated Jacobian has no pure imaginary eigenvalues.

Proposition 2. If all Hurwitz determinants (for all in are positive, and then all the eigenvalues of the associated Jacobian have negative real parts except a purely imaginary conjugate pair.

The conditions that we are looking for so that a Hopf bifurcation occurs (see theorem above) for a parametric continuous dynamical system are given by this last proposition.

Example

Consider the classical Van der Pol oscillator written with ordinary differential equations:

The Jacobian matrix associated to this system follows:

The characteristic polynomial (in ) of the linearization at (0,0) is equal to:

The coefficients are:
The associated Sturm series is:

The Sturm polynomials can be written as (here ):

The above proposition 2 tells that one must have:

Because 1 > 0 and 1 < 0 are obvious, one can conclude that a Hopf bifurcation may occur for Van der Pol oscillator if .

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Tautochrone curve</span> Concept in geometry

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

In classical mechanics, a Liouville dynamical system is an exactly solvable dynamical system in which the kinetic energy T and potential energy V can be expressed in terms of the s generalized coordinates q as follows:

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

References

  1. "Hopf Bifurcations" (PDF). MIT.
  2. Heitmann, S., Breakspear, M (2017-2022) Brain Dynamics Toolbox. bdtoolbox.org doi.org/10.5281/zenodo.5625923
  3. 1 2 Strogatz, Steven H. (1994). Nonlinear Dynamics and Chaos . Addison Wesley. ISBN   978-0-7382-0453-6.
  4. Guckenheimer, J.; Labouriau, J.S. (1993), "Bifurcation of the Hodgkin and Huxley equations: A new twist", Bulletin of Mathematical Biology, 55 (5): 937–952, doi:10.1007/BF02460693, S2CID   189888352 .
  5. "Selkov Model Wolfram Demo". [demonstrations.wolfram.com ]. Retrieved 30 September 2012.
  6. López, Álvaro G (2020-12-01). "Stability analysis of the uniform motion of electrodynamic bodies". Physica Scripta. 96 (1): 015506. doi:10.1088/1402-4896/abcad2. ISSN   1402-4896. S2CID   228919333.
  7. Osborne, Andrew G.; Deinert, Mark R. (October 2021). "Stability instability and Hopf bifurcation in fission waves". Cell Reports Physical Science. 2 (10): 100588. Bibcode:2021CRPS....200588O. doi: 10.1016/j.xcrp.2021.100588 . S2CID   240589650.
  8. For detailed derivation, see Strogatz, Steven H. (1994). Nonlinear Dynamics and Chaos . Addison Wesley. p.  205. ISBN   978-0-7382-0453-6.
  9. Serajian, Reza (2011). "Effects of the bogie and body inertia on the nonlinear wheel-set hunting recognized by the hopf bifurcation theory" (PDF). International Journal of Automotive Engineering. 3 (4): 186–196.
  10. 1 2 18.385J / 2.036J Nonlinear Dynamics and Chaos Fall 2014: Hopf Bifurcations. MIT OpenCourseWare
  11. Hale, J.; Koçak, H. (1991). Dynamics and Bifurcations . Texts in Applied Mathematics. Vol. 3. Berlin: Springer-Verlag. ISBN   978-3-540-97141-2.
  12. Hairer, E.; Norsett, S. P.; Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems (Second ed.). New York: Springer-Verlag. ISBN   978-3-540-56670-0.
  13. 1 2 Kahoui, M. E.; Weber, A. (2000). "Deciding Hopf bifurcations by quantifier elimination in a software component architecture". Journal of Symbolic Computation. 30 (2): 161–179. doi: 10.1006/jsco.1999.0353 .

Further reading