In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. [1] More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.
A Hopf bifurcation is also known as a Poincaré–Andronov–Hopf bifurcation, named after Henri Poincaré, Aleksandr Andronov and Eberhard Hopf.
The limit cycle is orbitally stable if a specific quantity called the first Lyapunov coefficient is negative, and the bifurcation is supercritical. Otherwise it is unstable and the bifurcation is subcritical.
The normal form of a Hopf bifurcation is the following time-dependent differential equation:
Write: The number α is called the first Lyapunov coefficient.
The normal form of the supercritical Hopf bifurcation can be expressed intuitively in polar coordinates,
where is the instantaneous amplitude of the oscillation and is its instantaneous angular position. [3] The angular velocity is fixed. When , the differential equation for has an unstable fixed point at and a stable fixed point at . The system thus describes a stable circular limit cycle with radius and angular velocity . When then is the only fixed point and it is stable. In that case, the system describes a spiral that converges to the origin.
The polar coordinates can be transformed into Cartesian coordinates by writing and . [3] Differentiating and with respect to time yields the differential equations,
and
The normal form of the subcritical Hopf is obtained by negating the sign of ,
which reverses the stability of the fixed points in . For the limit cycle is now unstable and the origin is stable.
Hopf bifurcations occur in the Lotka–Volterra model of predator–prey interaction (known as paradox of enrichment), the Hodgkin–Huxley model for nerve membrane potential, [4] the Selkov model of glycolysis, [5] the Belousov–Zhabotinsky reaction, the Lorenz attractor, the Brusselator, and in classical electromagnetism. [6] Hopf bifurcations have also been shown to occur in fission waves. [7]
The Selkov model is
The figure shows a phase portrait illustrating the Hopf bifurcation in the Selkov model. [8]
In railway vehicle systems, Hopf bifurcation analysis is notably important. Conventionally a railway vehicle's stable motion at low speeds crosses over to unstable at high speeds. One aim of the nonlinear analysis of these systems is to perform an analytical investigation of bifurcation, nonlinear lateral stability and hunting behavior of rail vehicles on a tangent track, which uses the Bogoliubov method. [9]
Consider a system defined by , where is smooth and is a parameter. After a linear transform of parameters, we can assume that as increases from below zero to above zero, the origin turns from a spiral sink to a spiral source.
Now, for , we perform a perturbative expansion using two-timing: where is "slow-time" (thus "two-timing"), and are functions of . By an argument with harmonic balance (see [10] for details), we can use . Then, plugging in to , and expanding up to the order, we would obtain three ordinary differential equations in .
The first equation would be of form , which gives the solution , where are "slowly varying terms" of . Plugging it into the second equation, we can solve for .
Then plugging into the third equation, we would have an equation of form , with the right-hand-side a sum of trigonometric terms. Of these terms, we must set the "resonance term" -- that is, -- to zero. This is the same idea as Poincaré–Lindstedt method. This then provides two ordinary differential equations for , allowing one to solve for the equilibrium value of , as well as its stability.
Consider the system defined by and . The system has an equilibrium point at origin. When increases from negative to positive, the origin turns from a stable spiral point to an unstable spiral point.
First, we eliminate from the equations:Now, perform the perturbative expansion as described above:with . Expanding up to order , we obtain:First equation has solution . Here are respectively the "slow-varying amplitude" and "slow-varying phase" of the simple oscillation.
Second equation has solution , where are also slow-varying amplitude and phase. Now, since , we can merge the two terms as some .
Thus, without loss of generality, we can assume . ThusPlug into the third equation, we obtainEliminating the resonance terms, we obtain The first equation shows that is a stable equilibrium. Thus we find that the Hopf bifurcation creates an attracting (rather than repelling) limit cycle.
Plugging in , we have . We can repick the origin of time to make . Now solve for yieldingPlugging in back to the expressions for , we havePlugging them back to yields the serial expansion of as well, up to order .
Letting for notational neatness, we have
This provides us with a parametric equation for the limit cycle. This is plotted in the illustration on the right.
The appearance or the disappearance of a periodic orbit through a local change in the stability properties of a fixed point is known as the Hopf bifurcation. The following theorem works for fixed points with one pair of conjugate nonzero purely imaginary eigenvalues. It tells the conditions under which this bifurcation phenomenon occurs.
Theorem (see section 11.2 of [11] ). Let be the Jacobian of a continuous parametric dynamical system evaluated at a steady point . Suppose that all eigenvalues of have negative real part except one conjugate nonzero purely imaginary pair . A Hopf bifurcation arises when these two eigenvalues cross the imaginary axis because of a variation of the system parameters.
Routh–Hurwitz criterion (section I.13 of [12] ) gives necessary conditions so that a Hopf bifurcation occurs. [13]
Let be Sturm series associated to a characteristic polynomial . They can be written in the form:
The coefficients for in correspond to what is called Hurwitz determinants. [13] Their definition is related to the associated Hurwitz matrix.
Proposition 1. If all the Hurwitz determinants are positive, apart perhaps then the associated Jacobian has no pure imaginary eigenvalues.
Proposition 2. If all Hurwitz determinants (for all in are positive, and then all the eigenvalues of the associated Jacobian have negative real parts except a purely imaginary conjugate pair.
The conditions that we are looking for so that a Hopf bifurcation occurs (see theorem above) for a parametric continuous dynamical system are given by this last proposition.
Consider the classical Van der Pol oscillator written with ordinary differential equations:
The Jacobian matrix associated to this system follows:
The characteristic polynomial (in ) of the linearization at (0,0) is equal to:
The coefficients are:
The associated Sturm series is:
The Sturm polynomials can be written as (here ):
The above proposition 2 tells that one must have:
Because 1 > 0 and −1 < 0 are obvious, one can conclude that a Hopf bifurcation may occur for Van der Pol oscillator if .
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.
Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.
The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.
In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.
The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.
In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.
Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature