Horse hoof

Last updated
Barefoot hoof, lateral view. (1) Coronet band, (2) walls, (3) toe, (4) quarter, (5) heel, (6) bulb, (7) P2 (small pastern) Hoof lat.jpg
Barefoot hoof, lateral view. (1) Coronet band, (2) walls, (3) toe, (4) quarter, (5) heel, (6) bulb, (7) P2 (small pastern)

A horse hoof is the lower extremity of each leg of a horse, the part that makes contact with the ground and carries the weight of the animal. It is both hard and flexible. It is a complex structure surrounding the distal phalanx of the 3rd digit (digit III of the basic pentadactyl limb of vertebrates, evolved into a single weight-bearing digit in horses) of each of the four limbs, which is covered by soft tissue and keratinised (cornified) matter. The arteries that supply the hoof with blood are, the vena plantaris externa and vena plantaris interna, which branch off the tibialis posterior. [1] The horse hoof encapsules one of the three metatarsus bones that are found in the hoof and heel area. [1]

Contents

Anatomy

Transitioning barefoot hoof, from below. Details: (1) periople, (2) bulb, (3) frog, (4) central sulcus, (5) collateral groove, (6) heel, (7) bar, (8) seat of corn, (9) pigmented wall (external layer), (10) water line (inner unpigmented layer), (11) white line, (12) apex of frog, (13) sole, (14) toe, (15) how to measure width (fulcrum), (16) quarter, (17) how to measure length Hoof quoted.jpg
Transitioning barefoot hoof, from below. Details: (1) periople, (2) bulb, (3) frog, (4) central sulcus, (5) collateral groove, (6) heel, (7) bar, (8) seat of corn, (9) pigmented wall (external layer), (10) water line (inner unpigmented layer), (11) white line, (12) apex of frog, (13) sole, (14) toe, (15) how to measure width (fulcrum), (16) quarter, (17) how to measure length
Vascular architecture of a horse hoof Vinylite and corrosion applied in a horse hoof.jpg
Vascular architecture of a horse hoof

The hoof is made up of two parts. The outer part, called the hoof capsule, is composed of various cornified specialized structures. The inner, living part of the hoof, is made up of soft tissues and bone. The cornified material of the hoof capsule differ in structure and properties. Dorsally, it covers, protects, and supports P3 (also known as the coffin bone, pedal bone, or PIII). Palmarly/plantarly, it covers and protects specialised soft tissues, such as tendons, ligaments, fibro-fatty and/or fibrocartilaginous tissues, and cartilage. The upper, almost circular limit of the hoof capsule is the coronet (also called coronary band), is at an angle to the ground of roughly similar magnitude in each pair of feet (i.e., fronts and backs). These angles may differ slightly from one horse to another, but not markedly. The walls of the hoof originate from the coronet band. Walls are longer in the dorsal portion of the hoof (toe), intermediate in length in the lateral portion (quarter), and short in the palmar/plantar portion (heel). Heels are separated by an elastic, resilient structure named the 'frog'. In the palmar/plantar part of the foot, above the heels and the frog, there are two oval bulges named the 'bulbs'.

When viewed from the lower surface, the hoof wall's free margin encircles most of the hoof. The triangular frog occupies the center area. Lateral to the frog are two grooves, deeper in their posterior portion, named 'collateral grooves'. At the heels, the palmar/plantar portions of the walls bend inward sharply, following the external surface of the collateral grooves to form the bars. The lower surface of the hoof, from the outer walls and the inner frog and bars, is covered by an exfoliating keratinised material, called the 'sole'.

Just below the coronet, the walls are covered for about an inch by a cornified, opaque 'periople' material. In the palmar/plantar part of the hoof, the periople is thicker and more rubbery over the heels, and it merges with frog material. Not all horses have the same amount of periople. Dry feet tend to lack this substance, which can be substituted with a hoof dressing.

Characters and functions of the external hoof structures

A horse's hoof being leveled by a farrier who is using a rasp. HoofRasp.jpg
A horse's hoof being leveled by a farrier who is using a rasp.

The walls

The walls are considered as a protective shield covering the sensitive internal hoof tissues (like the exoskeleton of arthropods), as a structure devoted to dissipating the energy of concussion, and as a surface to provide grip on different terrains. They are elastic and very tough, and vary in thickness from 6 to 12 mm. The walls are composed of three distinct layers: the pigmented layer, the water line, and the white line.

The pigmented layer is generated by the coronet, and its color is just like that of the coronet skin from which it is derived. If the coronet skin has any dark patches, the walls show a corresponding pigmented line, from the coronet to the ground, showing the wall's growth direction. This layer has a predominately protective role and is not as resistant to ground contact, where it can break and flake away.

The water line is built up by the coronet and by the wall's corium (the living tissue immediately beneath the walls). Its thickness increases proportionally to the distance from the coronet and, in the lower third of the walls, is thicker than the pigmented layer. It is very resistant to contact with the ground, and it serves mainly a support function.

The white line is the inner layer of the wall. It is softer and fibrous in structure and light in color; white in a freshly trimmed hoof, yellowish or gray after exposure to air and dirt. From the underside of the healthy hoof, it is seen as a thin line joining the sole and the walls. The white line grows out from the laminar connections. Any visible derangement of the white line indicates some important derangement of laminar connections that fix the walls to the underlying P3 bone. Since the white line is softer than both the walls and the sole, it wears fast where it appears on the surface; it appears as a subtle groove between the sole and the walls, often with some debris or sand inside.

The three layers of the wall merge into a single mass, and they grow downwards together. If the wall does not wear naturally from sufficient movement on abrasive terrain, then it will protrude from the solar surface. It then becomes prone to breakage, and the healthy hoof will self-trim by breaking or chipping off.

When a horseshoe is applied, it is fixed to the wall. Nails are driven in, oblique to the walls. They enter the wall at the outside edge of the white line and they emerge at the wall's surface, about 15 to 20 mm from the base of the wall.

The wall is anatomically analogous to the human fingernail or toenail. [2]

The frog

The frog is a V-shaped structure that extends forward across about two-thirds of the sole. Its thickness grows from the front to the back and, at the back, it merges with the heel periople. In its midline, it has a central groove (sulcus) that extends up between the bulbs.

It is dark gray-blackish in color and of a rubbery consistency, suggesting its role as a shock absorber and grip tool on hard, smooth ground. The frog also acts like a pump to move the blood back to the heart, a great distance from the relatively thin leg to the main organ of the circulatory system.

In the stabled horse, the frog does not wear but degrades, due to bacterial and fungal activity, to an irregular, soft, slashed surface. In the free-roaming horse, it hardens into a callous consistency with a near-smooth surface. [ citation needed ] For good health, the horse requires dry areas to stand. If exposed to constant wet or damp environments, the frog will develop a bacterial infection called thrush.

The frog is anatomically analogous to the human fingertip. [2]

The sole

The sole has a whitish-yellowish, sometimes grayish color. It covers the whole space from the perimeter of the wall to the bars and the frog, on the underside of the hoof. Its deep layer has a compact, waxy character and it is called 'live sole'. Its surface is variable in character as a result of ground contact. If there is no contact, as in shod hooves or when the walls are too long or the movement poor, the lower surface of the sole has a crumbly consistency, and it is easily abraded by scratching it with a hoofpick. Conversely, it has a very hard consistency, with a smooth, bright surface, when there is a consistent, active contact with the ground. The front portion beneath the front of the pedal bone is called the 'sole callus'.

A stone bruise affects the sole of the horse's foot. It is often caused by a horse treading on a stone or sharp type of object, landings from high jumps and excessive exposure to snow. These can also occur when horses, particularly baby horses, perform various acrobatic feats (known as horse gymnastics). A major symptom is lameness. [3]

The bars

Bars are the inward folds of the wall, originating from the heels at an abrupt angle. The strong structure built up by the extremities of the heel and of the bar is called the 'heel buttress'. The sole between the heel walls and the bars is named the 'seat of corn', and it is a very important landmark used by natural hoof trimmers to evaluate the correct heel height. The bars have a three-layer structure just like the walls (see above). When overgrown, they bend outwards and cover the lower surface of the sole.

Internal structures

Sagittal section of a wild horse hoof. Pink: soft tissues; light gray: bones (P2, P3 and navicular bone); cyan: tendons; red: corium; yellow: digital cushion; dark gray: frog; orange: sole; brown: walls) Horse hoof wild bare sagittal.jpg
Sagittal section of a wild horse hoof. Pink: soft tissues; light gray: bones (P2, P3 and navicular bone); cyan: tendons; red: corium; yellow: digital cushion; dark gray: frog; orange: sole; brown: walls)

The third phalanx (coffin bone; pedal bone; P3;) is completely (or almost completely) covered by the hoof capsule. It has a crescent shape and a lower cup-like concavity. Its external surface mirrors the wall's shape. The corium, a dermo-epidermal, highly vascularized and innervated layer between the wall and the coffin bone, has a parallel, laminar shape, and is named the laminae. The laminar connection has a key role in the strength and health of the hoof. Beneath the rear part of the sole, there is the digital cushion, which separates the frog and the bulb from underlying tendons, joints, and bones, providing cushioning protection. In foals and yearlings, the digital cushion is composed of fibro-fatty, soft tissue. In the adult horse, it hardens into a fibrocartilaginous tissue when sufficient, consistent concussion stimulates the back of the hoof. Normal transformation of the digital cushion into fibrocartilagineous tissue is now considered a key goal, both for prevention of, and for rehabilitation of recovering cases of navicular syndrome. The flexor tendon lies deeper, just along the posterior surface of the small pastern bone (PII) and navicular bone, and it connects with the posterior surface of P3; the navicular functions as a pulley.

The hoof mechanism

Bare hooves imprints on the snow. Left, a front print, right, a hind print; note the different shape and contact area with the ground. Bare hooves prints.jpg
Bare hooves imprints on the snow. Left, a front print, right, a hind print; note the different shape and contact area with the ground.

The horse hoof is not a rigid structure, but fairly elastic and flexible. When loaded, the hoof physiologically changes its shape. In part, this is a result of solar concavity, which has a variable depth in the region of 1–1.5 cm. In part, it is a result of the arched shape of the lateral lower profile of the walls and sole, so that when an unloaded hoof touches a firm ground surface, there is only contact at the toe and heels (active contact). A loaded hoof has a much greater area of ground contact (passive contact), covering the lower wall edge, most of the sole, bars, and frog. Active contact areas can be seen as slightly protruding spots in the walls and in the callused sole.

The shape changes in a loaded hoof are complex. The plantar arch flattens, the solar concavity decreases in depth, and the heels spread. The hoof diameter increases to a 'dilated' configuration and P3 drops marginally into the hoof capsule. There is some recent evidence that a depression takes place in this phase, with blood pooling ('diastolic phase') mainly into the wall corium. When unloaded, the hoof restores its 'contracted' configuration, the pressure rises and the blood is squeezed out ('systolic phase'). There is a secondary pumping action with the flexion of the foot as it is raised.

The hoof mechanism ensures effective blood circulation into the hoof, and it aids general circulation.

Hooves are a plastic structure and their time-related, very complex changes can be considered in the short term (days/weeks) and over the horse's lifespan.

Hoof changes in the short term

Just like the cornified layer of epidermis and of any mammalian nail, the hoof capsule is created only from the epidermis, the outer living layer of the skin. From a microscopic point of view, the epidermis is a multi-layered, specialised cornifying epithelium. It overlays the dermis, and it is separated from it by a basal lamina. It has no blood vessels, and living cells acquire their oxygen and nutrients by fluid exchanges and molecular diffusion from the underlying dermis, flowing into microscopical spaces among individual cells. Products of metabolism are cleared by the reverse of this process. Epidermis growth takes place by mitotic activity in its deepest layer, into the basal layer, with slow outward migration and maturation of cells. As these cells approach the surface, special proteins accumulate into their cytoplasm, then the cells die and 'dry', into microscopic, tightly-connected individual layers, composed mainly of keratin. The resulting 'dead' superficial layer serves a protective function, saving underlying living tissues from injury, from dehydration, and from fungal and bacterial attack. The constant thickness of the cornified layer results most commonly from regular superficial exfoliation. When a specialised cornified structure has a particular toughness, as in nails and hair, little or no exfoliation occurs, and the cornified structures must slowly migrate away from their original position.

Thus, the specialised cornified structures of the hoof are the wall, the sole, the frog and the periople. The wall does not exfoliate at all; it is constantly growing downward (about 1 cm per month), and self-trims by wearing or chipping by ground contact. In wild and feral horses, solar, frog and periople materials grow outwards and exfoliate at the surface by ground contact and wearing. In the domesticated horse, movement and typical ground hardness are insufficient to allow self-trimming, so humans have to care for them by trimming the walls and the frog, and scraping off the dead sole.

Hoof changes over the horse's lifetime

The front and hind hooves are identical in the foal but differ visibly in the adult horse. This is good evidence of the medium-term plasticity of the whole hoof shape, as a result of variation in its use. Slow changes in hoof shape occur under any consistent change in the horse's movement pattern and under a wide variety of pathological conditions. They can be seen now as a clear example of a complex adaptive system, a frequent feature of living beings and structures.

Self-adapting capabilities of the hooves show their maximal effectiveness in wild equids (but domesticated horses show this too, to a lesser extent), as shown by the perfect soundness of feral horses, such as Mustangs, in a wide variety of environments.

Hoof evolution

Equid hooves are the result of the 55-million-year evolution of the horse. The ancestral horse, Eohippus , is characterized by four toes on the hindfeet and three toes on the forefeet. [4] Wild and domesticated Equus species share a very similar hoof shape and function. The present-day conformation of the hoof is a result of a progressive evolutionary loss of digits I, II, IV and V of the basal pentadactyl limb, with changes in bones, joints, and the hoof capsule. The resulting conformation allows a heavy, strong body to move with high speed on any ground, and most efficiently on open, hard, flat areas like prairies and deserts (an example of cursorial specialisation).

A 2018 study has found that the hoof's skeleton may contain remnants of the horse's other digits. [5]

Disorders

There are several disorders and injuries that can affect the equine hoof. Laminitis and navicular disease are two of the most serious. Thrush and white line disease, common bacterial infections, can become serious if left untreated. Quittor, an infection of the lower leg that can travel under the hoof, is also sometimes seen, although most commonly in draft horses. Hoof wall separation disease is a genetic hoof disease.

Quarter cracks are vertical splits in a hoof wall, most commonly seen on the inside of the front hooves or the outside of the hind hooves. They can result from poor shoeing and management practices, natural hoof conformation, or injuries to the leg and hoof. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Foot</span> Anatomical structure found in vertebrates

The foot is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws and/or nails.

<span class="mw-page-title-main">Horseshoe</span> Device attached to a horses hoof to protect it from wear

A horseshoe is a product designed to protect a horse hoof from wear. Shoes are attached on the palmar surface of the hooves, usually nailed through the insensitive hoof wall that is anatomically akin to the human toenail, although much larger and thicker. However, there are also cases where shoes are glued.

<span class="mw-page-title-main">Human leg</span> Lower extremity or limb of the human body (foot, lower leg, thigh and hip)

The human leg is the entire lower limb of the human body, including the foot, thigh or sometimes even the hip or buttock region. The major bones of the leg are the femur, tibia, and adjacent fibula. The thigh is between the hip and knee, while the calf (rear) and shin (front) are between the knee and foot.

<span class="mw-page-title-main">Heel</span> Part of the foot in the back

The heel is the prominence at the posterior end of the foot. It is based on the projection of one bone, the calcaneus or heel bone, behind the articulation of the bones of the lower leg.

<span class="mw-page-title-main">Hoof</span> Tip of a toe of an ungulate mammal, strengthened by a thick and horny keratin covering

The hoof is the tip of a toe of an ungulate mammal, which is covered and strengthened with a thick and horny keratin covering. Artiodactyls are even-toed ungulates, species whose feet have an even number of digits; the ruminants with two digits are the most numerous, e.g. giraffe, deer, bison, cattle, goat, and sheep. The feet of perissodactyl mammals have an odd number of toes, e.g. the horse, the rhinoceros, and the tapir. Although hooves are limb structures primarily found in placental mammals, hadrosaurs such as Edmontosaurus possessed hoofed forelimbs. The marsupial Chaeropus also had hooves.

<span class="mw-page-title-main">Navicular bone</span> Small bone found in the feet of most mammals

The navicular bone is a small bone found in the feet of most mammals.

<span class="mw-page-title-main">Laminitis</span> Disease of the feet of hooved animals

Laminitis is a disease that affects the feet of ungulates and is found mostly in horses and cattle. Clinical signs include foot tenderness progressing to inability to walk, increased digital pulses, and increased temperature in the hooves. Severe cases with outwardly visible clinical signs are known by the colloquial term founder, and progression of the disease will lead to perforation of the coffin bone through the sole of the hoof or being unable to stand up, requiring euthanasia.

Navicular syndrome, often called navicular disease, is a syndrome of lameness problems in horses. It most commonly describes an inflammation or degeneration of the navicular bone and its surrounding tissues, usually on the front feet. It can lead to significant and even disabling lameness.

<span class="mw-page-title-main">Equine conformation</span> Evaluation of a horses bone and muscle structure

Equine conformation evaluates a horse's bone structure, musculature, and its body proportions in relation to each other. Undesirable conformation can limit the ability to perform a specific task. Although there are several faults with universal disadvantages, a horse's conformation is usually judged by what its intended use may be. Thus "form to function" is one of the first set of traits considered in judging conformation. A horse with poor form for a Grand Prix show jumper could have excellent conformation for a World Champion cutting horse, or to be a champion draft horse. Every horse has good and bad points of its conformation and many horses excel even with conformation faults.

<span class="mw-page-title-main">Ringbone</span>

Ringbone is exostosis in the pastern or coffin joint of a horse. In severe cases, the growth can encircle the bones, giving ringbone its name. It has been suggested by some authors that such a colloquial term, whilst commonly used, might be misleading and that it would be better to refer to this condition as osteoarthritis of the inter-phalangeal joints in ungulates.

<span class="mw-page-title-main">Fetlock</span>

Fetlock is the common name in horses, large animals, and sometimes dogs for the metacarpophalangeal and metatarsophalangeal joints.

<span class="mw-page-title-main">Frog (horse anatomy)</span> Part of a horses hoof

The frog is a part of a horse hoof, located on the underside, which should touch the ground if the horse is standing on soft footing. The frog is triangular in shape, and extends midway from the heels toward the toe, covering around 25% of the bottom of the hoof.

<span class="mw-page-title-main">Sole (foot)</span> Bottom part of foot

The sole is the bottom of the foot.

<span class="mw-page-title-main">Equine anatomy</span> Descriptive scheme

Equine anatomy encompasses the gross and microscopic anatomy of horses, ponies and other equids, including donkeys, mules and zebras. While all anatomical features of equids are described in the same terms as for other animals by the International Committee on Veterinary Gross Anatomical Nomenclature in the book Nomina Anatomica Veterinaria, there are many horse-specific colloquial terms used by equestrians.

A flexion test is a preliminary veterinary procedure performed on a horse, generally during a prepurchase or a lameness exam. The purpose is to accentuate any pain that may be associated with a joint or soft-tissue structure, allowing the practitioner to localize a lameness to a specific area, or to alert a practitioner to the presence of sub-clinical disease that may be present during a pre-purchase exam.

<span class="mw-page-title-main">Coffin bone</span> Bone in the hoof of hoofed animals

The coffin bone, also known as the pedal bone (U.S.), is the bottommost bone in the front and rear legs of horses, cattle, pigs and other ruminants. In horses it is encased by the hoof capsule. Also known as the distal phalanx, third phalanx, or "P3". The coffin bone meets the short pastern bone or second phalanx at the coffin joint. The coffin bone is connected to the inner wall of the horse hoof by a structure called the laminar layer. The insensitive laminae coming in from the hoof wall connects to the sensitive laminae layer, containing the blood supply and nerves, which is attached to the coffin bone. The lamina is a critical structure for hoof health, therefore any injury to the hoof or its support system can in turn affect the coffin bone.

Lameness is an abnormal gait or stance of an animal that is the result of dysfunction of the locomotor system. In the horse, it is most commonly caused by pain, but can be due to neurologic or mechanical dysfunction. Lameness is a common veterinary problem in racehorses, sport horses, and pleasure horses. It is one of the most costly health problems for the equine industry, both monetarily for the cost of diagnosis and treatment, and for the cost of time off resulting in loss-of-use.

<span class="mw-page-title-main">Natural hoof care</span>

Natural hoof care is the practice of keeping horses so that their hooves are worn down naturally, or trimmed to emulate natural wear, so they do not suffer overgrowth, splitting and other disorders. Horseshoes are not used, but domesticated horses may still require trimming, exercise and other measures to maintain a natural shape and degree of wear.

<span class="mw-page-title-main">Comparative foot morphology</span> Comparative anatomy

Comparative foot morphology involves comparing the form of distal limb structures of a variety of terrestrial vertebrates. Understanding the role that the foot plays for each type of organism must take account of the differences in body type, foot shape, arrangement of structures, loading conditions and other variables. However, similarities also exist among the feet of many different terrestrial vertebrates. The paw of the dog, the hoof of the horse, the manus (forefoot) and pes (hindfoot) of the elephant, and the foot of the human all share some common features of structure, organization and function. Their foot structures function as the load-transmission platform which is essential to balance, standing and types of locomotion.

<span class="mw-page-title-main">Limbs of the horse</span> Structures made of bones, joints, muscles, tendons, and ligaments

The limbs of the horse are structures made of dozens of bones, joints, muscles, tendons, and ligaments that support the weight of the equine body. They include two apparatuses: the suspensory apparatus, which carries much of the weight, prevents overextension of the joint and absorbs shock, and the stay apparatus, which locks major joints in the limbs, allowing horses to remain standing while relaxed or asleep. The limbs play a major part in the movement of the horse, with the legs performing the functions of absorbing impact, bearing weight, and providing thrust. In general, the majority of the weight is borne by the front legs, while the rear legs provide propulsion. The hooves are also important structures, providing support, traction and shock absorption, and containing structures that provide blood flow through the lower leg. As the horse developed as a cursorial animal, with a primary defense mechanism of running over hard ground, its legs evolved to the long, sturdy, light-weight, one-toed form seen today.

References

  1. 1 2 Stubbs, George (1976). The Anatomy of The Horse (1st ed.). Dover Publications INC. New York. pp. 39, 71–72. ISBN   0-486-23402-9.
  2. 1 2 Dyce, K.M.; Sack, W.O.; Wensing, C.J.G. (2010). "Chapter 10. The common integument". Textbook of veterinary anatomy (4th ed.). St. Louis, Mo.: Saunders/Elsevier. ISBN   978-1-4160-6607-1.
  3. "Stone Bruises Common in Thoroughbreds". Blood-Horse. Retrieved 19 July 2011.
  4. Matthew, W. D. (1926). "The Evolution of the Horse: A Record and Its Interpretation". The Quarterly Review of Biology. 1 (2): 152–154. doi:10.1086/394242. S2CID   84266679.
  5. Solounias, Nikos; Danowitz, Melinda; Stachtiaris, Elizabeth; Khurana, Abhilasha; Araim, Marwan; Sayegh, Marc; Natale, Jessica (2018). "The evolution and anatomy of the horse manus with an emphasis on digit reduction". Royal Society Open Science. 5 (1): 171782. doi:10.1098/rsos.171782. PMC   5792948 . PMID   29410871.
  6. Reap, Stacey (December 26, 2008). "Resolving Quarter Cracks Takes More than Just a Stitch in Time". Chronicle of the Horse. Retrieved 2013-03-19.