Huaifang Water Reclamation Plant

Last updated

Huaifang Water Reclamation Plant is a wastewater recycling plant, located in the southwest of Beijing, China. Commissioned since 2017, the 3-floor plant is spanned over an area of 162,000 m2 which is built in response to the state capital of Beijing, facing a water shortage challenge exacerbated by climate change and urbanization with having the major water treatment systems being installed underground to save a valuable land. The water treatment project is said to have been equipped with the forefront technologies.

Contents

Owned and operated by Beijing Drainage Group; Huaifang Water Reclamation Plant is the largest underground MBR-based wastewater treatment plant in Asia, with its construction being finished by December 2016 in association to the facility upgradation, executed by Suez in the year 2015. [1]

Operation

The plant is aimed towards maximizing the treatment capability of sludge and wastewater, the quality of treated water and improving flood control with holding a capacity to recycle 200 million m3 of wastewater per year.

Wastewater flowing into the facility is treated in several ways, including filtration, biological oxidation of chemicals and sterilization with ultraviolet rays. [2] The Huaifang sludge line is fitted with pre-dewatering centrifuges, thermal hydrolysis CambiTHPTM, sludge silos, dewatering chamber filter presses & anaerobic digesters. A design capacity is 180 tDS/d, while the treatment of Lugouqiao (100,000 m3/d) & Wujiacun (80,000 m3/d) sludge is applied. [3] The water treatment plant processes and turns the industrial and residential wasted water into a water that meets environmental quality requirements; reclaimed water is then used in surrounding areas, for industrial and commercial uses as well as to replenish the nearby wetlands. [1] [2] As according to the report by Xinhua, Around 500,000 tons of reclaimed water per day is supplied to the 638,000 square meters water wetland park, situated by plant. Before moving towards the river, the reclaimed water flows into the wetland through underground pipes, further enhancing the local ecosystem. [4]

Related Research Articles

<span class="mw-page-title-main">NEWater</span> Brand of reclaimed wastewater

NEWater is the brand name given to highly treated reclaimed wastewater produced by Singapore's Public Utilities Board. NEWater is produced by further purifying conventionally treated wastewater through microfiltration, reverse osmosis and ultraviolet irradiation. The water is potable quality and can be added to drinking water supply reservoirs where it is withdrawn and treated again in conventional water treatment plants before being distributed to consumers. However, most NEWater is currently used for non-drinking purposes, mostly by industries with production requirements for high purity water.

<span class="mw-page-title-main">Wastewater treatment</span> Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process which removes and eliminates contaminants from wastewater. It thus converts it into an effluent that can be returned to the water cycle. Once back in the water cycle, the effluent creates an acceptable impact on the environment. It is also possible to reuse it. This process is called water reclamation. The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater the treatment plant is called a Sewage Treatment. Municipal wastewater or sewage are other names for domestic wastewater. For industrial wastewater, treatment takes place in a separate Industrial wastewater treatment, or in a sewage treatment plant. In the latter case it usually follows pre-treatment. Further types of wastewater treatment plants include Agricultural wastewater treatment and leachate treatment plants.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Biosolids</span> Decontaminated sewage sludge

Biosolids are solid organic matter recovered from a sewage treatment process and used as fertilizer. In the past, it was common for farmers to use animal manure to improve their soil fertility. In the 1920s, the farming community began also to use sewage sludge from local wastewater treatment plants. Scientific research over many years has confirmed that these biosolids contain similar nutrients to those in animal manures. Biosolids that are used as fertilizer in farming are usually treated to help to prevent disease-causing pathogens from spreading to the public. Some sewage sludge can not qualify as biosolids due to persistent, bioaccumulative and toxic chemicals, radionuclides, and heavy metals at levels sufficient to contaminate soil and water when applied to land.

<span class="mw-page-title-main">Hyperion sewage treatment plant</span> Sewage treatment facility in Los Angeles, California

The Hyperion Water Reclamation Plant is a sewage treatment plant in southwest Los Angeles, California, next to Dockweiler State Beach on Santa Monica Bay. The plant is the largest sewage treatment facility in the Los Angeles Metropolitan Area and one of the largest plants in the world. Hyperion is operated by the City of Los Angeles, Department of Public Works, and the Bureau of Sanitation. Hyperion is the largest sewage plant by volume west of the Mississippi River.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

Membrane bioreactors are combinations of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. These technologies are now widely used for municipal and industrial wastewater treatment. The two basic membrane bioreactor configurations are the submerged membrane bioreactor and the side stream membrane bioreactor. In the submerged configuration, the membrane is located inside the biological reactor and submerged in the wastewater, while in a side stream membrane bioreactor, the membrane is located outside the reactor as an additional step after biological treatment.

<span class="mw-page-title-main">Degrémont</span> French water treatment company

Degrémont is a company specializing in the production of drinking water, and in the treatment of sewage and sludge. After starting as a family business in France in 1939, it has since become a subsidiary of Suez Environment, employing 4,600 people in 70 countries, and generating annual revenues of €1.520 billion.

<span class="mw-page-title-main">Thermal hydrolysis</span>

Thermal hydrolysis is a process used for treating industrial waste, municipal solid waste and sewage sludge.

Beijing, the capital of China, is characterized by intense water scarcity during the long dry season as well as heavy flooding during the brief wet season. Beijing is one of the most water-scarce cities in the world. Total water use is 3.6 billion cubic meters, compared to renewable fresh water resources of about 3 billion cubic meters. The difference is made up by the overexploitation of groundwater. Two-thirds of the water supply comes from groundwater, one third from surface water. Average rainfall has substantially declined since the 1950s. Furthermore, one of the two main rivers supplying the city, the Yongding River, had to be abandoned as a source of drinking water because of pollution. Water savings in industry and agriculture have compensated for these losses and freed up water for residential uses.

<span class="mw-page-title-main">Blue Plains Advanced Wastewater Treatment Plant</span> Wastewater treatment plant in Washington, D.C.

Blue Plains Advanced Wastewater Treatment Plant in Washington, D.C., is the largest advanced wastewater treatment plant in the world. The facility is operated by the District of Columbia Water and Sewer Authority. The plant opened in 1937 as a primary treatment facility, and advanced treatment capacity was added in the 1970s and 1980s. The effluent that leaves Blue Plains is discharged to the Potomac River and meets some of the most stringent permit limits in the United States.

<span class="mw-page-title-main">Lystek</span>

Lystek International is a Canadian waste treatment technology company founded in 2000 at the University of Waterloo, Ontario, Canada to commercialize treatment technologies for biosolids and other non-hazardous, organic waste materials. Lystek is headquartered in Cambridge, Ontario, Canada and is owned by its management and R.W. Tomlinson Ltd.

The adsorption/bio-oxidation process is a two-stage modification of the activated sludge process used for wastewater treatment. It consists of a high-loaded A-stage and low-loaded B-stage. The process is operated without a primary clarifier, with the A-stage being an open dynamic biological system. Both stages have separate settling tanks and sludge recycling lines, thus maintaining unique microbial communities in both reactors.

<span class="mw-page-title-main">Fecal sludge management</span> Collection, transport, and treatment of fecal sludge from onsite sanitation systems

Fecal sludge management (FSM) is the storage, collection, transport, treatment and safe end use or disposal of fecal sludge. Together, the collection, transport, treatment and end use of fecal sludge constitute the "value chain" or "service chain" of fecal sludge management. Fecal sludge is defined very broadly as what accumulates in onsite sanitation systems and specifically is not transported through a sewer. It is composed of human excreta, but also anything else that may go into an onsite containment technology, such as flushwater, cleansing materials, menstrual hygiene products, grey water, and solid waste. Fecal sludge that is removed from septic tanks is called septage.

The Thomas P. Smith Water Reclamation Facility (TPSWRF) is owned and operated by the city of Tallahassee, Florida. The facility provides sewage treatment services for Tallahassee, Florida and the surrounding areas.

Sewer mining is a concept where municipal wastewater (sewage) is pumped from a trunk sewer and treated on-site to accommodate a range of local, nonpotable water needs. It is a strategy for combating water scarcity. It combines decentralized wastewater management and water reclamation. Since 2012, it is used as a tool for improving water management and promoting reuse of water in Australia.

References

  1. 1 2 "Asia's largest underground MBR-based WWTP*". www.suez-asia.com. Retrieved 2020-11-30.
  2. 1 2 "Underground water treatment plant to make waste useful - China - Chinadaily.com.cn". www.chinadaily.com.cn. Retrieved 2020-11-30.
  3. "Beijing - Huaifang - Cambi - world leader in thermal hydrolysis". www.cambi.com. Retrieved 2020-11-30.
  4. "China starts to build Asia's biggest reclaimed water wetland park - Xinhua | English.news.cn". xinhuanet.com. Archived from the original on August 14, 2020. Retrieved 2020-11-30.
  1. Official Website
  2. Huaifang WWTP