Hydrogen fluoride laser

Last updated

The hydrogen fluoride laser is an infrared chemical laser. It is capable of delivering continuous output power in the megawatt range. [1]

Contents

Hydrogen fluoride lasers operate at the wavelength of 2.7–2.9  μm. This wavelength is absorbed by the atmosphere, effectively attenuating the beam and reducing its reach, unless used in a vacuum environment. However, when deuterium is used instead of hydrogen, the deuterium fluoride lases at the wavelength of about 3.8 μm. This makes the deuterium fluoride laser usable for terrestrial operations. [2]

Deuterium fluoride laser

The deuterium fluoride laser constructionally resembles a rocket engine. In the combustion chamber, ethylene is burned in nitrogen trifluoride. This reaction produces free excited fluorine radicals. Just after the nozzle, the mixture of helium and hydrogen or deuterium gas is injected to the exhaust stream; the hydrogen or deuterium reacts with the fluorine radicals, producing excited molecules of deuterium fluoride or hydrogen fluoride. The excited molecules then undergo stimulated emission in the optical resonator region of the laser. [3]

Deuterium fluoride lasers have found military applications: the MIRACL laser, the Pulsed energy projectile anti-personnel weapon, and the Tactical High Energy Laser are of the deuterium fluoride type. [4]

Fusion

An Argentine-American physicist and accused spy, Leonardo Mascheroni, has proposed the idea of using hydrogen fluoride lasers to produce nuclear fusion. [5]

Related Research Articles

<span class="mw-page-title-main">Deuterium</span> Isotope of hydrogen with one neutron

Deuterium (hydrogen-2, symbol 2H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other is protium, or hydrogen-1). The deuterium nucleus, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutrons in the nucleus. Deuterium has a natural abundance in Earth's oceans of about one atom of deuterium among every 6,420 atoms of hydrogen (see heavy water). Thus deuterium accounts for about 0.0156% by number (0.0312% by mass) of all hydrogen in the oceans: 4.85×1013 tonnes of deuterium – mainly in form of HOD (or 1HO2H or 1H2HO) and only rarely in form of D2O (or 2H2O) – in 1.4×1018 tonnes of water. The abundance of deuterium changes slightly from one kind of natural water to another (see Vienna Standard Mean Ocean Water).

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research. By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is considered. This process is crucial in the manufacture of uranium fuel for nuclear power plants, and is also required for the creation of uranium-based nuclear weapons. Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade.

<span class="mw-page-title-main">Photochemistry</span> Sub-discipline of chemistry

Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible (400–750 nm), or infrared radiation (750–2500 nm).

<span class="mw-page-title-main">Excimer laser</span> Type of ultraviolet laser important in chip manufacturing and eye surgery

An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and micromachining.

<span class="mw-page-title-main">Carbon-dioxide laser</span> Form of gas laser

The carbon-dioxide laser (CO2 laser) was one of the earliest gas lasers to be developed. It was invented by Kumar Patel of Bell Labs in 1964 and is still one of the most useful types of laser. Carbon-dioxide lasers are the highest-power continuous-wave lasers that are currently available. They are also quite efficient: the ratio of output power to pump power can be as large as 20%. The CO2 laser produces a beam of infrared light with the principal wavelength bands centering on 9.6 and 10.6 micrometers (μm).

<span class="mw-page-title-main">Gas laser</span> Laser in which electricity is discharged through gas

A gas laser is a laser in which an electric current is discharged through a gas to produce coherent light. The gas laser was the first continuous-light laser and the first laser to operate on the principle of converting electrical energy to a laser light output. The first gas laser, the Helium–neon laser (HeNe), was co-invented by Iranian engineer and scientist Ali Javan and American physicist William R. Bennett, Jr., in 1960. It produced a coherent light beam in the infrared region of the spectrum at 1.15 micrometres.

<span class="mw-page-title-main">Krypton fluoride laser</span>

A krypton fluoride laser is a particular type of excimer laser, which is sometimes called an exciplex laser. With its 248 nanometer wavelength, it is a deep ultraviolet laser which is commonly used in the production of semiconductor integrated circuits, industrial micromachining, and scientific research. The term excimer is short for 'excited dimer', while exciplex is short for 'excited complex'. An excimer laser typically contains a mixture of: a noble gas such as argon, krypton, or xenon; and a halogen gas such as fluorine or chlorine. Under suitably intense conditions of electromagnetic stimulation and pressure, the mixture emits a beam of coherent stimulated radiation as laser light in the ultraviolet range.

<span class="mw-page-title-main">Carbon tetrafluoride</span> Chemical compound

Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. It has a very high bond strength due to the nature of the carbon–fluorine bond.

Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. It is similar to AVLIS. Its main advantage over AVLIS is low energy consumption and use of uranium hexafluoride instead of vaporized uranium. MLIS was conceived in 1971 at the Los Alamos National Laboratory.

<span class="mw-page-title-main">Chemical oxygen iodine laser</span> US near-infrared chemical laser

A chemical oxygen iodine laser (COIL) is a near–infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode. Its output wavelength is 1315 nm, a transition wavelength of atomic iodine.

A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

<span class="mw-page-title-main">Plutonium tetrafluoride</span> Chemical compound

Plutonium(IV) fluoride is a chemical compound with the formula (PuF4). This salt is generally a brown solid but can appear a variety of colors depending on the grain size, purity, moisture content, lighting, and presence of contaminants. Its primary use in the United States has been as an intermediary product in the production of plutonium metal for nuclear weapons usage.

<span class="mw-page-title-main">Fluorine-18</span> Isotope of fluorine emitting a positron

Fluorine-18 (18F) is a fluorine radioisotope which is an important source of positrons. It has a mass of 18.0009380(6) u and its half-life is 109.771(20) minutes. It decays by positron emission 96.7% of the time and electron capture 3.3% of the time. Both modes of decay yield stable oxygen-18.

<span class="mw-page-title-main">Deuterium arc lamp</span> Type of gas-discharge light source that emits ultraviolet light

A deuterium arc lamp is a low-pressure gas-discharge light source often used in spectroscopy when a continuous spectrum in the ultraviolet region is needed.

<span class="mw-page-title-main">Krypton difluoride</span> Chemical compound

Krypton difluoride, KrF2 is a chemical compound of krypton and fluorine. It was the first compound of krypton discovered. It is a volatile, colourless solid at room temperature. The structure of the KrF2 molecule is linear, with Kr−F distances of 188.9 pm. It reacts with strong Lewis acids to form salts of the KrF+ and Kr
2
F+
3
cations.

<span class="mw-page-title-main">Mercury(II) fluoride</span> Chemical compound

Mercury(II) fluoride has the molecular formula HgF2 as a chemical compound of one atom of mercury with 2 atoms of fluorine.

<span class="mw-page-title-main">Krypton</span> Chemical element with atomic number 36 (Kr)

Krypton is a chemical element; it has symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is often used with other rare gases in fluorescent lamps. Krypton is chemically inert.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

References

  1. "Chemical warfare agents and related chemical problems (Parts 1-2) - Digital Collections - National Library of Medicine". National Library of Medicine Digital Collections . 14111270RX1. Washington, D.C. 1946. Archived from the original on 2022-08-22. Retrieved 2022-08-22.
  2. McLeary, R. (1984). "REPORT MRL-R-931" (PDF). Defence Science and Technology Organisation. 931 (1): 19. Archived (PDF) from the original on 2022-08-22. Retrieved 2022-08-22 via Australian Government.
  3. Funk, William Ted; Sontheimer, Richard Francis (1977). Cooper, A. W. (ed.). "A HYDROGEN FLUORIDE/DEUTERIUM FLUORIDE LASER AT THE NAVAL POSTGRADUATE SCHOOL" (PDF). Naval Postgraduate School . 1 (Unlimted): 96 via United States Government.
  4. Rudisill, J. E.; Garcia, B.; Bobbs, B. L.; Braunstein, M. (1980-07-01). "High-performance dichroic beam splitters for deuterium fluoride chemical lasers". Applied Optics. 19 (13): 2121–2127. Bibcode:1980ApOpt..19.2121R. doi:10.1364/AO.19.002121. ISSN   1559-128X. PMID   20221196.
  5. Broad, William J. (2009-10-21). "Property of Nuclear Critic Is Seized by Federal Agents" . The New York Times. ISSN   0362-4331. Archived from the original on 2022-08-22. Retrieved 2022-08-22.