MIRACL, or Mid-Infrared Advanced Chemical Laser, is a directed energy weapon developed by the US Navy. It is a deuterium fluoride laser, a type of chemical laser.
The MIRACL laser first became operational in 1980. [1] It can produce over a megawatt of output for up to 70 seconds, [2] making it the most powerful continuous wave (CW) laser in the US. [3] : 5 Its original goal was to be able to track and destroy anti-ship cruise missiles, but in later years it was used to test phenomenologies associated with national anti-ballistic and anti-satellite laser weapons. Originally tested at a contractor facility in California, as of the later 1990s and early 2000s, it was located at the former MAR-1 facility ( 32°37′55″N106°19′55″W / 32.632°N 106.332°W ) in the White Sands Missile Range in New Mexico. [4]
The beam size in the resonator is about 21 by 3 cm (8.3 by 1.2 in) wide. The beam is then reshaped to a 14 cm × 14 cm (5.5 in × 5.5 in) square. [2]
Amid much controversy in October 1997, MIRACL was tested against MSTI-3, a US Air Force satellite at the end of its original mission in orbit [5] at a distance of 432 km (268 mi). [6] MIRACL failed during the test and was damaged [7] : 1 and the Pentagon claimed mixed results for other portions of the test. A second, lower-powered chemical laser was able to temporarily blind the MSTI-3 sensors during the test. [8] : 170 [9] : 7
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.
The Strategic Defense Initiative (SDI), was a proposed missile defense system intended to protect the United States from attack by ballistic nuclear missiles. The program was announced in 1983, by President Ronald Reagan. Reagan called for a system that would render nuclear weapons obsolete, and to end the doctrine of mutual assured destruction (MAD), which he described as a "suicide pact". Elements of the program reemerged in 2019 under the Space Development Agency (SDA).
The Tactical High-Energy Laser, or THEL, was a laser developed for military use, also known as the Nautilus laser system. The mobile version is the Mobile Tactical High-Energy Laser, or MTHEL. In 1996, the United States and Israel entered into an agreement to produce a cooperative THEL called the Demonstrator, which would utilize deuterium fluoride chemical laser technologies. In 2000 and 2001, THEL shot down 28 Katyusha artillery rockets and five artillery shells. On November 4, 2002, THEL shot down an incoming artillery shell. The prototype weapon was roughly the size of six city buses, made up of modules that held a command center, radar and a telescope for tracking targets, the chemical laser itself, fuel and reagent tanks, and a rotating mirror to reflect its beam toward speeding targets. It was discontinued in 2005.
The Boeing YAL-1 airborne laser testbed was a modified Boeing 747-400F with a megawatt-class chemical oxygen iodine laser (COIL) mounted inside. It was primarily designed to test its feasibility as a missile defense system to destroy tactical ballistic missiles (TBMs) while in boost phase. The aircraft was designated YAL-1A in 2004 by the U.S. Department of Defense.
The Air Force Research Laboratory (AFRL) is a scientific research and development detachment of the United States Air Force Materiel Command dedicated to leading the discovery, development, and integration of direct-energy based aerospace warfighting technologies, planning and executing the Air Force science and technology program, and providing warfighting capabilities to United States air, space, and cyberspace forces. It controls the entire Air Force science and technology research budget which was $2.4 billion in 2006.
Many ceramic materials, both glassy and crystalline, have found use as optically transparent materials in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including: optical fibers for guided lightwave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared (IR) heat seeking devices for missile guidance systems and IR night vision. In commercial and general knowledge domains, it is commonly accepted that transparent ceramics or ceramic glass are varieties of strengthened glass, such as those used for the screen glass on an iPhone.
The Scout family of rockets were American launch vehicles designed to place small satellites into orbit around the Earth. The Scout multistage rocket was the first orbital launch vehicle to be entirely composed of solid fuel stages. It was also the only vehicle of that type until the successful launch of the Japanese Lambda 4S in 1970.
A chemical oxygen iodine laser (COIL) is a near–infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode. Its output wavelength is 1315 nm, a transition wavelength of atomic iodine.
The hydrogen fluoride laser is an infrared chemical laser. It is capable of delivering continuous output power in the megawatt range.
A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.
Terra-3 was a Soviet laser testing centre, located on the Sary Shagan anti-ballistic missile (ABM) testing range in the Karaganda Region of Kazakhstan. It was originally built to test missile defence concepts, but these attempts were dropped after the Anti-Ballistic Missile Treaty was signed. The site later hosted two modest devices used primarily for experiments in space tracking. Several other laser test sites were also active during this period. During the 1980s, officials within the United States Department of Defense (DoD) suggested it was the site of a prototypical anti-satellite weapon system. The site was abandoned and is now partially disassembled.
TacSat-2 is the first in a series of U.S. military experimental technology and communication satellites.TacSat-2 (also known as JWS-D1 was an experimental satellite built by the USAF's Air Force Research Laboratory with an operational life expected to be not more than one year as part of the "Advanced Concept Technology Demonstration" program.
The ASM-135 ASAT is an air-launched anti-satellite multistage missile that was developed by Ling-Temco-Vought's LTV Aerospace division. The ASM-135 was carried exclusively by United States Air Force (USAF) F-15 Eagle fighter aircraft.
Electro-optical MASINT is a subdiscipline of Measurement and Signature Intelligence, (MASINT) and refers to intelligence gathering activities which bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).
The Agency for Defense Development is the South Korean government agency for research and development in defense technology, funded by the Defense Acquisition Program Administration (DAPA). It was established in August 1970 under the banner of the self-reliant national defense promoted by President Park Chung Hee.
Hypersonic flight is flight through the atmosphere below altitudes of about 90 km (56 mi) at speeds greater than Mach 5, a speed where dissociation of air begins to become significant and high heat loads exist. Speeds over Mach 25 have been achieved below the thermosphere as of 2020.
The Space Tracking and Surveillance System was a pair of satellites developed by the United States Missile Defense Agency (MDA) to research the space-based detection and tracking of ballistic missiles. Data from STSS satellites could allow interceptors to engage incoming missiles earlier in flight than would be possible with other missile detection systems. The STSS program began in 2001, when the "SBIRS Low" program was transferred to MDA from the United States Air Force. In December 2002, SBIRS Low Research & Development was renamed Space Tracking and Surveillance System (STSS).
Miniature Sensor Technology Integration-3 (MSTI-3) was a technology demonstration satellite operated by the United States Air Force. It was equipped with two infrared cameras and one visible light camera, designed to survey Earth's surface features and characterize their appearance in infrared wavelengths. MSTI-3 launched on 17 May 1996 aboard an Orbital Sciences Pegasus rocket.
The Space Development Agency (SDA) is a United States Space Force direct-reporting unit tasked with deploying disruptive space technology. One of the technologies being worked on is space-based missile tracking using large global satellite constellations made up of industry-procured low-cost satellites. The SDA has been managed by the United States Space Force since October 2022. By February 2024 the SDA had 33 satellites on orbit. SDA intends to have at least 1,000 satellites in low Earth orbit by 2026.
The Low-Power Atmospheric Compensation Experiment (LACE), also referred to as LOSAT-L and USA-51, was a military satellite developed by the Naval Research Laboratory for the United States' Strategic Defense Initiative in the late 1980s and early 1990s, otherwise referred to as the "Star Wars" program.
The Mid-Infrared Advanced Chemical Laser (MIRACL) is the first megawatt-class, continuous wave, chemical laser built in the free world. It is a deuterium fluoride (DF) chemical laser with energy spectra distributed among about ten lasing lines between 3.6 and 4.0 microns wavelength. Since it first lased in 1980, it has accumulated well over 3500 seconds of lasing time.
Later tests also were conducted at White Sands Missile Range aimed at finding out how effective a laser would be. For these tests, the nation's most powerful laser, the Mid-Infrared Advanced Chemical Laser, was used.
{{cite tech report}}
: Unknown parameter |agency=
ignored (help)The experiment is being conducted by the U.S. Army's Mid-Infra-Red Advanced Chemical Laser (MIRACL) located at White Sands Missile Range, NM. The satellite that will be used for the test, the U.S. Air Force Miniature Sensor Technology Integration program's third satellite (MSTI-3), has exceeded its useful lifetime. The experiment will have two parts: (1) very brief laser illuminations of less than one second, and (2) an illumination of less than 10 seconds.
The announcement of Friday's laser test caused some political rock-throwing in and outside of Washington because of claims by some that the test is the first step in the militarization of space and a potential violation of treaties. [...] The Miniature Sensor Technology Integration (MSTI-3) satellite was "illuminated" by a high-powered, ground-based laser housed at the White Sands Missile Range in New Mexico shortly after dark on Friday evening.
The MSTI 3 satellite served as a target for the US Armys Mid-Infra-Red Advance Chemical Laser (MIRACL) at White Sands, NM, to demonstrate the capability of a laser to interfere with the optical train, and analyze the data to determine the effect on the optics. The test consisted of a 1 sec burst to locate the satellite, followed by a 10 sec burst. This was the first test of a LASER against an orbiting satellite.
The Mid-Infrared Chemical Laser was slightly damaged twice during tests against the Air Force's Miniature Sensor Technology Integration (MSTI-3) satellite in October. The purpose of the tests was to evaluate the effect of the laser on the satellite's infrared sensors. [...] Program experts believe that when the power was ramped up, a shock wave in the gases within the deuterium fluoride laser resulted, and caused it to move, which then caused a small amount of melting inside the device.
In any event, the outcome of the test was remarkable: although the MIRACL laser itself basically failed, a lower-powered companion laser, intended merely to align the system and track the satellite, proved sufficiently powerful to blind the target satellite temporarily without destroying or damaging the onboard sensors. Few had anticipated that what was essentially a piece of commercially available apparatus could have such militarily significant effects.
Both the MIRACL laser, which was damaged during the test, and a lower-power (30-watt) laser primarily intended for system alignment and satellite tracking were used. Results of the test are classified, but the DOD did report that the system tracked and illuminated the satellite, and the lower-power laser either temporarily dazzled or damaged the satellite's sensor.