Hydrophobic concrete

Last updated

Hydrophobic concrete is concrete that repels water. It meets the standards outlined in the definition of waterproof concrete . Developed in Australia in the mid-20th century, millions of cubic yards of hydrophobic concrete have been laid in Australia, Asia, and Europe, and in the United States since 1999. Its effective use in hundreds of structures has contributed to its large acceptance and growing use. [1] [2]

Contents

Structure

Typical concrete is quite hydrophilic. This comes from its intricate system of tiny capillaries, which suck water through the microcrack network within a concrete slab. [3] This hardened matrix creates a continuous "source to sink" cycle, meaning water from above is constantly pulled to an area of lower elevation. Darcy's coefficient refers to the ability of liquefied water under pressure to flow through any pores and capillaries that are present. A lower Darcy's constant correlates with a higher quality material. [4]

Commercial companies use different approaches to modify a regular concrete mixture in order to create hydrophobic concrete, all of which involve somehow filling the porous concrete mixture. Some of the most commonly used methods include polymer formation, small speck infusion, and crystalline formations, the latter being the most widely used.[ citation needed ]

Polymer formation works by having a water-soluble pre-polymer polymerize via ion exchange with di-valent metal ions such as Ca and Fe ions to form rubbery insoluble particles. These small particles migrate and concentrate in the small fissures and capillaries formed in the concrete as it dries. As polymerization proceeds, rubber plugs form and permanently seal these water pathways, greatly reducing both water absorption and water permeability.[ citation needed ]

Crystalline technology is used to create hydrophobic concrete by causing crystal structures to form in the tiny capillaries, pores and other air pockets left behind in the concrete curing process. During this formation, by-products are left behind in the capillaries and pores of the freshly cured concrete, typically calcium hydroxide, sulfates, sodium carbonates, potassium, calcium, and hydrated and unhydrated cement particles. These crystal structures then plug the pores and capillaries, preventing water from flowing through them. Once the crystalline chemicals are added to the concrete mixture, through either an admixture or coating, they react with the by-products in the presence of water. This reaction then forms an insoluble crystal structure that clogs the pores. This process continues until all the chemicals have reacted. When applied as a coating, the chemical reaction proceeds through the process of chemical diffusion. This is a process of a high chemical density solution migrating towards the low density chemical solution until the two come into equilibrium. Soaking the concrete in water creates a low chemical density in the pores, and applying the crystalline chemical as a coating then creates a high chemical density. These two fluids diffuse through the inner structure of the concrete until they reach equilibrium throughout the inner structure. When this process is finished, the hydrophobic concrete's crystal structure is complete. [5] [ better source needed ]

Properties

The ultimate goal when forming a hydrophobic material is to reduce the polarity of the molecules. Because water molecules are very polar, they are easily attract to partially positive or partially negative charges. On a neutral surface, water molecules bunch up and attract each other, creating a spherical droplet of water. These droplets can then evaporate off the concrete surface rather than be absorbed into the capillaries of the concrete. The exact structure and composition of the crystals used in hydrophobic concrete is not public information; due to its properties, however, it can be assumed that it is a non-polar molecule. [6] [7]

The property to repel water gives hydrophobic concrete the ability to avoid contamination by particles dissolved in water drops. Because the crystals themselves are not polar, there is little interaction between the crystals and dissolved oxygen. This allows the concrete to withstand the rebar rusting that so often compromises the strength of concrete that has iron bars running through it. Standard commercial concrete has an average water absorption of 4-10%. In contrast, hydrophobic concrete has an average of 0.3-1%.

An overlooked property of hydrophobic concrete is its ability to repel humidity in the air as well. In contrast to liquid water, water molecules in the air moving with a higher kinetic energy and ultimately exist in a gas-like form. The crystal structures in hydrophobic concrete are compact enough to prevent humidity from moving through the capillaries of the concrete.

Processing

Hydrophobic concrete is produced in a variety of ways that fall under two categories; coatings or admixtures. Both allow the crystal structures to form in the presence of water.[ citation needed ]

When creating hydrophobic concrete through a coating process, a coating is sprayed or brushed onto a porous surfaces. In most cases, it is applied to a regular concrete slab that then undergoes a corrosive process to expose more of the concrete's capillaries. This can be achieved by water blasting the surface at about 3,000-4,000 psi. Sandblasting and acid etching are also suitable processes. The addition of water is the next step. It can be applied either vertically or horizontally, but temperatures should not go below 33 degrees Fahrenheit to prevent freezing. Excessive evaporation should also be avoided. In areas with high evaporation rates, this process often takes place overnight when temperatures are cooler. Once the pores are saturated as much as possible with water, the coating is applied. Hydrophobic chemicals are in a powder form and mixed with water at a ratio of five parts powder to two parts water for application by brush. For spray application, the ratio is five parts powder to three parts water. The coating is applied between 1.25-1.5 lb per square yard and continues until the whole surface is covered. If the surface requires another coat, it must be applied within forty eight hours of the initial application of the hydrophobic mixture. Once applied, the concrete must cure in a moist environment two to three hours after the application. This is achieved by spraying the surface with water at least three times a day for a few days. Evaporation retardants are also occasionally used. Depending on the climate, the curing process may take longer and require more frequent wetting. Once the concrete is cured, it sits for two to three weeks before the process is complete.[ citation needed ]

When hydrophobic concrete is made through the use of an admixture, a powder with the hydrophobic chemicals is added during the batching process. In other words, it is added to the concrete mixture itself when the concrete is laid. The usual dosage is two to three percent of the concrete mixture. Because water is a part of the batching process, an additional curing process is not required. This approach is easier and less labor-intensive, but it can only be used when new concrete is laid. [8] [ better source needed ]

Uses

Hydrophobic concrete can be used in the same applications as regular concrete, most often where regular concrete is dangerous to repair or the cost of structural damage would be highly detrimental. Tunnel work is a major application of hydrophobic concrete as underground repairs are difficult and costly. [9] It is also a favorite choice for laying foundations for buildings and sidewalks in locations below the water table.[ citation needed ]

Underwater use of hydrophobic concrete is a major application in marine facilities. Is often used to hold water to create pools and ponds. NASA used hydrophobic concrete to build the swimming pool used to train astronauts for walking on the Moon. Hydrophobic concrete is also used in applications that are exposed to rain or rain puddling, such as green roofs, other kinds of roofs, parking structures, and plazas.[ citation needed ]

Advantages

Amongst the many benefits of using hydrophobic concrete, it reduces installation time and lowers costs. Use of hydrophobic concrete can reduce the labor time of industrial project because normal concrete involves a corrosion proofing period as well as a waterproofing period. With hydrophobic concrete, both corrosion proofing and waterproofing are done at the same time.

Likewise, time reduction reduces installation costs. Regular, membrane-backed concrete can cost around US$5 per square foot, although prices can vary based on the application. The one-step installation process of hydrophobic concrete brings the cost down to about US$3.20 per square foot. Such savings can quickly add up over the course of a project, as reported by the Hycrete company of southern California.

An estimated five billion dollars were spent in Western Europe alone on hydrophilic cement repairs in 1998. Most of the repairs were necessary due to the damage of water corrosion in urban areas. Because there is little or no water corrosion, hydrophobic concrete is better preserved than regular concrete, which typically looks worn and aged after a few years.

From an environmental standpoint, hydrophobic concrete is also beneficial because it is "green". Its ability to be re-crushed makes it easily reusable. Although regular concrete can be re-crushed, it involves a very costly process, which often means that the concrete ends up in a landfill. This advantage of hydrophobic concrete enables its cost-efficient reuse in future projects.

Disadvantages

Some other cons to hydrophobic concrete come from the application process. When applied as a coating, it can only penetrate up to 12 inches into the material. Also, the coating process itself is extremely labor-intensive. If the structure is thicker than 12 inches, or it is a large-area project, an admixture approach would have better results.[ citation needed ]

Using the alternative crystalline technology to produce hydrophobic concrete is only possible when water is present, since the surface must be carefully wetted before the coating is applied. [10]

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer (;) is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Paint</span> Pigment applied over a surface that dries as a solid film

Paint is a liquid pigment that, after applied to a solid material and allowed to dry, adds a film-like layer, in most cases to create an image, known as a painting. Paint can be made in many colors and types. Most paints are either oil-based or water-based, and each has distinct characteristics.

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, LEDs, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

<span class="mw-page-title-main">Efflorescence</span> Migration of a salt to the surface of a porous material

In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water, or occasionally in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.

An artificial membrane, or synthetic membrane, is a synthetically created membrane which is usually intended for separation purposes in laboratory or in industry. Synthetic membranes have been successfully used for small and large-scale industrial processes since the middle of the twentieth century. A wide variety of synthetic membranes is known. They can be produced from organic materials such as polymers and liquids, as well as inorganic materials. Most commercially utilized synthetic membranes in industry are made of polymeric structures. They can be classified based on their surface chemistry, bulk structure, morphology, and production method. The chemical and physical properties of synthetic membranes and separated particles as well as separation driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradient. The respective membrane process is therefore known as filtration. Synthetic membranes utilized in a separation process can be of different geometry and flow configurations. They can also be categorized based on their application and separation regime. The best known synthetic membrane separation processes include water purification, reverse osmosis, dehydrogenation of natural gas, removal of cell particles by microfiltration and ultrafiltration, removal of microorganisms from dairy products, and dialysis.

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol–gel process is used to produce ceramic nanoparticles.

A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Powder coatings.

<span class="mw-page-title-main">Primer (paint)</span> Preparatory coating put on materials before painting

A primer or undercoat is a preparatory coating put on materials before painting. Priming ensures better adhesion of paint to the surface, increases paint durability, and provides additional protection for the material being painted.

<span class="mw-page-title-main">Waterproofing</span> Process of making an object or structure waterproof or water-resistant

Waterproofing is the process of making an object or structure waterproof or water-resistant so that it remains relatively unaffected by water or resisting the ingress of water under specified conditions. Such items may be used in wet environments or underwater to specified depths.

<span class="mw-page-title-main">Powder coating</span> Type of coating applied as a free-flowing, dry powder

Powder coating is a type of coating that is applied as a free-flowing, dry powder. Unlike conventional liquid paint which is delivered via an evaporating solvent, powder coating is typically applied electrostatically and then cured under heat or with ultraviolet light. The powder may be a thermoplastic or a thermoset polymer. It is usually used to create a hard finish that is tougher than conventional paint. Powder coating is mainly used for coating of metals, such as household appliances, aluminium extrusions, drum hardware, automobiles, and bicycle frames. Advancements in powder coating technology like UV-curable powder coatings allow for other materials such as plastics, composites, carbon fiber, and MDF to be powder coated due to the minimum heat and oven dwell time required to process these components.

<span class="mw-page-title-main">Coffee ring effect</span> Capillary flow effect

In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect, or simply ring stain.

Polymer concrete, also known as Epoxy Granite, is a type of concrete that uses a polymer to replace lime-type cements as a binder. In some cases the polymer is used in addition to Portland cement to form Polymer Cement Concrete (PCC) or Polymer Modified Concrete (PMC). Polymers in concrete have been overseen by Committee 548 of the American Concrete Institute since 1971.

Dry lubricants or solid lubricants are materials that, despite being in the solid phase, are able to reduce friction between two surfaces sliding against each other without the need for a liquid oil medium.

Hydrophobic silica is a form of silicon dioxide that has hydrophobic groups chemically bonded to the surface. The hydrophobic groups are normally alkyl or polydimethylsiloxane chains. Hydrophobic silica can be processed in different ways; such as fumed silica, precipitated silica, and aerosol assisted self assembly, all existing in the form of nanoparticles.

An anti-graffiti coating is a coating that prevents graffiti paint from bonding to surfaces.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damages are caused by the formation of expansive products produced by various chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms. Other damaging processes can also involve calcium leaching by water infiltration and different physical phenomena initiating cracks formation and propagation. All these detrimental processes and damaging agents adversely affects the concrete mechanical strength and its durability.

Adsorption of polyelectrolytes on solid substrates is a surface phenomenon where long-chained polymer molecules with charged groups bind to a surface that is charged in the opposite polarity. On the molecular level, the polymers do not actually bond to the surface, but tend to "stick" to the surface via intermolecular forces and the charges created by the dissociation of various side groups of the polymer. Because the polymer molecules are so long, they have a large amount of surface area with which to contact the surface and thus do not desorb as small molecules are likely to do. This means that adsorbed layers of polyelectrolytes form a very durable coating. Due to this important characteristic of polyelectrolyte layers they are used extensively in industry as flocculants, for solubilization, as supersorbers, antistatic agents, as oil recovery aids, as gelling aids in nutrition, additives in concrete, or for blood compatibility enhancement to name a few.

A volatile corrosion inhibitor (VCI) is a material that protects metals from corrosion. Corrosion inhibitors are chemical compounds that can decrease the corrosion rate of a material, typically a metal or an alloy. NACE International Standard TM0208 defines volatile corrosion inhibitor (VCI) as a chemical substance that acts to reduce corrosion by a combination of volatilization from a VCI material, vapor transport in the atmosphere of an enclosed environment, and condensation onto surface in the space, including absorption, dissolution, and hydrophobic effects on metal surfaces, where the rate of corrosion of metal surfaces is thereby inhibited. They also called vapor-phase inhibitors, vapor-phase corrosion inhibitors, and vapor-transported corrosion inhibitors.

Organosilicon water repellent:

References

  1. "Hydrophobic Concrete in So Cal « Hycrete, Inc".
  2. http://www.hycrete.com/files/media-releases/Hycrete-Media-01-01-06.pdf [ bare URL PDF ]
  3. "Archived copy" (PDF). Archived from the original (PDF) on 2014-12-08. Retrieved 2014-12-08.{{cite web}}: CS1 maint: archived copy as title (link)
  4. "Concrete Waterproofing with Crystalline Technology | Sponsored by XYPEX Chemical Corp. | Originally published in November 2011 | Architectural Record's Continuing Education Center". Archived from the original on 2014-11-24. Retrieved 2014-11-24.
  5. "Concrete Waterproofing with Crystalline Technology | Sponsored by XYPEX Chemical Corp. | Originally published in November 2011 | Architectural Record's Continuing Education Center". Archived from the original on 2014-11-24. Retrieved 2014-11-24.
  6. Peter, John. "Waterproofingservice.com" . Retrieved 22 December 2022.
  7. Bolat, Alex. "Concrete crack Repair" . Retrieved 22 January 2022.
  8. "Concrete Waterproofing with Crystalline Technology | Sponsored by XYPEX Chemical Corp. | Originally published in November 2011 | Architectural Record's Continuing Education Center". Archived from the original on 2014-11-24. Retrieved 2014-11-24.
  9. "Broadview Technologies Acquires Hycrete, Inc. « Hycrete, Inc". 25 April 2012.
  10. http://continuingeducation.construction.com/article.php?L=49&C=850&P=2