IFITM3

Last updated
IFITM3
Identifiers
Aliases IFITM3 , 1-8U, DSPA2b, IP15, interferon induced transmembrane protein 3
External IDs OMIM: 605579 MGI: 1913391 HomoloGene: 136199 GeneCards: IFITM3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_021034

NM_025378

RefSeq (protein)

NP_066362

NP_079654

Location (UCSC) Chr 11: 0.32 – 0.33 Mb Chr 7: 140.59 – 140.59 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Interferon-induced transmembrane protein 3 (IFITM3) is a protein that in humans is encoded by the IFITM3 gene. [5] [6] [7] It plays a critical role in the immune system's defense against Swine Flu, where heightened levels of IFITM3 keep viral levels low, and the removal of IFITM3 allows the virus to multiply unchecked. [8] This observation has been further advanced by a recent study from Paul Kellam's lab that shows that a single nucleotide polymorphism in the human IFITM3 gene purported to increase influenza susceptibility is overrepresented in people hospitalised with pandemic H1N1. [9] The prevalence of this mutation is thought to be approximately 1/400 in European populations. [9] [10]

Contents


Model organisms

Model organisms have been used in the study of IFITM3 function. A conditional knockout mouse line, called Ifitm3tm1Masu [15] [16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute. [17] [18] [19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [13] [20] Twenty four tests were carried out on mutant mice, but no significant abnormalities were observed. [13] However, challenge with influenza A virus indicated that these mice display increased viral susceptibility. [9]

Related Research Articles

<span class="mw-page-title-main">DUSP3</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein phosphatase 3 is an enzyme that in humans is encoded by the DUSP3 gene.

<span class="mw-page-title-main">SNX5</span> Protein-coding gene in the species Homo sapiens

Sorting nexin-5 is a protein that in humans is encoded by the SNX5 gene.

<span class="mw-page-title-main">Kaptin (actin binding protein)</span> Protein-coding gene in the species Homo sapiens

Kaptin is a protein that in humans is encoded by the KPTN gene.

<span class="mw-page-title-main">Shugoshin 2</span> Protein-coding gene in the species Homo sapiens

Shugoshin 2(Shugoshin-2), also known as Shugoshin-like 2, is a protein which in humans is encoded by the SGO2 gene.

<span class="mw-page-title-main">WBP2</span> Protein-coding gene in the species Homo sapiens

WW domain-binding protein 2 is a protein that in humans is encoded by the WBP2 gene.

<span class="mw-page-title-main">SMS (gene)</span> Protein-coding gene in the species Homo sapiens

Spermine synthase is an enzyme that in humans is encoded by the SMS gene. The protein encoded by this gene belongs to the spermidine/spermine synthases family. This gene encodes a ubiquitous enzyme of polyamine metabolism.

<span class="mw-page-title-main">SNF8</span> Protein-coding gene in the species Homo sapiens

Vacuolar-sorting protein SNF8 is a protein that in humans is encoded by the SNF8 gene.

<span class="mw-page-title-main">CYB561</span> Protein-coding gene in the species Homo sapiens

Cytochrome b561 is a protein that in humans is encoded by the CYB561 gene.

<span class="mw-page-title-main">JARID2</span> Protein-coding gene in the species Homo sapiens

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">TBC1D10A</span> Protein-coding gene in the species Homo sapiens

TBC1 domain family member 10A is a protein that in humans is encoded by the TBC1D10A gene.

<span class="mw-page-title-main">ASXL1</span> Protein-coding gene in the species Homo sapiens

Putative Polycomb group protein ASXL1 is a protein that in humans is encoded by the ASXL1 gene.

<span class="mw-page-title-main">NECAB2</span> Protein-coding gene in the species Homo sapiens

N-terminal EF-hand calcium-binding protein 2 is a protein that in humans is encoded by the NECAB2 gene.

<span class="mw-page-title-main">SLC35F6</span> Protein-coding gene in the species Homo sapiens

SLC35F6 is a protein that in humans is encoded by the SLC35F6 gene. The orthologue in mice is 4930471M23Rik.

<span class="mw-page-title-main">AGPAT3</span> Protein-coding gene in the species Homo sapiens

1-acyl-sn-glycerol-3-phosphate acyltransferase gamma is an enzyme that in humans is encoded by the AGPAT3 gene. The protein encoded by this gene is an acyltransferase that converts lysophosphatidic acid into phosphatidic acid, which is the second step in the de novo phospholipid biosynthetic pathway. The encoded protein may be an integral membrane protein. Two transcript variants encoding the same protein have been found for this gene.

<span class="mw-page-title-main">PUS7L</span> Protein-coding gene in the species Homo sapiens

Pseudouridylate synthase 7 homolog-like protein is an enzyme that in humans is encoded by the PUS7L gene.

<span class="mw-page-title-main">SMYD4</span> Protein-coding gene in the species Homo sapiens

SET and MYND domain-containing protein 4 is a protein that in humans is encoded by the SMYD4 gene.

<span class="mw-page-title-main">Ninein-like protein</span> Protein found in humans

Ninein-like protein is a protein that in humans is encoded by the NINL gene. It is part of the centrosome.

<span class="mw-page-title-main">BRDT</span> Protein-coding gene in the species Homo sapiens

Bromodomain testis-specific protein is a protein that in humans is encoded by the BRDT gene. It is a member of the Bromodomain and Extra-terminal motif (BET) protein family.

<span class="mw-page-title-main">TRAFD1</span> Protein-coding gene in the species Homo sapiens

TRAF-type zinc finger domain-containing protein 1 is a protein that in humans is encoded by the TRAFD1 gene.

<span class="mw-page-title-main">COQ9</span> Protein-coding gene in humans

Ubiquinone biosynthesis protein COQ9, mitochondrial, also known as coenzyme Q9 homolog (COQ9), is a protein that in humans is encoded by the COQ9 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000142089 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025492 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lewin AR, Reid LE, McMahon M, Stark GR, Kerr IM (Aug 1991). "Molecular analysis of a human interferon-inducible gene family". Eur J Biochem. 199 (2): 417–423. doi: 10.1111/j.1432-1033.1991.tb16139.x . PMID   1906403.
  6. Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP (Dec 2005). "IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion". Dev Cell. 9 (6): 745–756. doi: 10.1016/j.devcel.2005.10.010 . PMID   16326387.
  7. "Entrez Gene: IFITM3 interferon induced transmembrane protein 3 (1-8U)".
  8. "Natural swine flu defence found". Archived from the original on December 20, 2009.
  9. 1 2 3 Everitt A.R.; et al. (March 2012). "IFITM3 restricts the morbidity and mortality associated with influenza". Nature. 484 (7395): 519–23. Bibcode:2012Natur.484..519.. doi:10.1038/nature10921. PMC   3648786 . PMID   22446628.
  10. "Gene flaw linked to serious flu risk". BBC News. 25 March 2012.
  11. "Salmonella infection data for Ifitm3". Wellcome Trust Sanger Institute.
  12. "Citrobacter infection data for Ifitm3". Wellcome Trust Sanger Institute.
  13. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  18. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  19. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.

Further reading