Idioblast

Last updated
Calcium oxalate needles shot out from idioblast (600x magnification) Raphides in idioblast.jpg
Calcium oxalate needles shot out from idioblast (600x magnification)

An idioblast is an isolated plant cell that differs from neighboring tissues. They have various functions such as storage of reserves, excretory materials, pigments, and minerals. They could contain oil, latex, gum, resin, tannin, or pigments etc. Some can contain mineral crystals such as acrid tasting and poisonous calcium oxalate, carbonate, or silica. Any of the tissue or tissue systems of plants can contain idioblasts. [1] Idioblasts are divided into three main categories: excretory, tracheoid, and sclerenchymatous.

Contents

Idioblasts can contain biforine cells that form crystals. The chemicals are excreted by the plant and stored in liquid or crystalline form. In bundles they are known as druse and as crystals they can be of raphide [needle] form. When the end of an idioblast is broken the crystals or other substance is ejected by internal water pressure. Idioblasts of calcium oxalate may function as a deterrent to herbivores, as a means of sequestering or storing calcium, or as a means of stiffening tissue structure. [2]

Three Types of Idioblast

Excretory idioblasts store oils, lipids, tannins, mucilage, and minerals. [3] They are currently under research for their storage of the important medicinal qualities of plants. Selective culturing of excretory idioblasts allows better harvesting of their stored products.

Tracheoid idioblasts strongly resemble tracheids, or water-conducting cells. Tracheoids are elongated idioblasts with helical or reticulate secondary walls. They are not connected to the plant’s vascular system. [4] Tracheoid idioblasts have also been known as lignified idioblasts, spiral cells, tracheoidal idioblasts, spirally thickened sclereids, and tracheoidioblasts.

Sclerenchymatous idioblasts are thickened structural cells that provide stability and rigidity to the plant. In multiples they are known as sclereids. A singular sclerenchymatous idioblast is less common than the grouped sclereids. Their development and differentiation is unknown.

Crystals

There are a variety of crystal types and shapes that can be stored within an idioblast. Crystals form in plants when there is an excess of minerals available and play various roles in plant function. Druses are crystalline clusters that appear scale or box like and play structural roles in sclerenchymatous idioblasts. Styloids and raphides are both needle like crystal projections, with raphides being smaller. Both styloids and raphides can contain barbs and are important defense mechanisms. Prisms are multifaceted crystal formations that assist pollen function. Sand are fine, grainy crystals. The most common substance for crystal is calcium oxalate, a common product from calcium abundance in plants.

Known Roles of Idioblasts in Plants

Avocado isoblasts contain the lipid persin which is known for its antifungal capabilities. [5] There is current research into the effects of persin in breast cancer treatment. Avocado isoblasts also contain oil, which is harvested and consumed as avocado oil.

Araceae produce calcium oxalate raphides for defense against herbivores. When damaged, sap from the plant and saliva from the animal will cause the idioblast to swell and hydraulically shoot the raphides out. [6] Consumption of the raphides can cause oral pain, vomiting, hypersalivation, and swelling of the pharynx.

Rhododendron Vireya have small, thin leaves when compared to other subgenuses of Rhododendron, and inversely have much greater volumes of water storing idioblasts. The Vireya subgroup is believed to have developed specialized idioblasts to aid the water metrics within its small leaves to counter the lack of volume. [7]

Development

Idioblast cells are believed to be the precursors for guard cells, trichiomes, gland cells, and subsidiary cells of stomata. [8] The uneven division of idioblasts causes extreme differentiation in their daughter cells, with many daughter cells having different functions from their parent cell. How or why a singular idioblast forms among other cells is unknown.

See also

Related Research Articles

<span class="mw-page-title-main">Plant cell</span> Type of eukaryotic cell present in green plants

Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae. Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or centrioles, except in the gametes, and a unique method of cell division involving the formation of a cell plate or phragmoplast that separates the new daughter cells.

<span class="mw-page-title-main">Araceae</span> Family of flowering plants

The Araceae are a family of monocotyledonous flowering plants in which flowers are borne on a type of inflorescence called a spadix. The spadix is usually accompanied by, and sometimes partially enclosed in, a spathe. Also known as the arum family, members are often colloquially known as aroids. This family of 140 genera and about 4,075 known species is most diverse in the New World tropics, although also distributed in the Old World tropics and northern temperate regions.

<span class="mw-page-title-main">Tissue (biology)</span> Group of cells having similar appearance and performing the same function

In biology, tissue is a historically derived biological organizational level between cells and a complete organ. A tissue is therefore often thought of as an assembly of similar cells and their extracellular matrix from the same embryonic origin that together carry out a specific function. Organs are then formed by the functional grouping together of multiple tissues.

<i>Dieffenbachia</i> Genus of plants

Dieffenbachia, commonly known as dumb caneorleopard lily, is a genus of tropical flowering plants in the family Araceae. It is native to the New World Tropics from Mexico and the West Indies south to Argentina. Some species are widely cultivated as ornamental plants, especially as houseplants, and have become naturalized on a few tropical islands.

<span class="mw-page-title-main">Calcium oxalate</span> Calcium salt of oxalic acid

Calcium oxalate (in archaic terminology, oxalate of lime) is a calcium salt of oxalic acid with the chemical formula CaC2O4 or Ca(COO)2. It forms hydrates CaC2O4·nH2O, where n varies from 1 to 3. Anhydrous and all hydrated forms are colorless or white. The monohydrate CaC2O4·H2O occurs naturally as the mineral whewellite, forming envelope-shaped crystals, known in plants as raphides. The two rarer hydrates are dihydrate CaC2O4·2H2O, which occurs naturally as the mineral weddellite, and trihydrate CaC2O4·3H2O, which occurs naturally as the mineral caoxite, are also recognized. Some foods have high quantities of calcium oxalates and can produce sores and numbing on ingestion and may even be fatal. Cultural groups with diets that depend highly on fruits and vegetables high in calcium oxalate, such as those in Micronesia, reduce the level of it by boiling and cooking them. They are a constituent in 76% of human kidney stones. Calcium oxalate is also found in beerstone, a scale that forms on containers used in breweries.

<span class="mw-page-title-main">Tendril</span> Specialisation of plant parts used to climb or bind

In botany, a tendril is a specialized stem, leaf or petiole with a threadlike shape used by climbing plants for support and attachment, as well as cellular invasion by parasitic plants such as Cuscuta. There are many plants that have tendrils; including sweet peas, passionflower, grapes and the Chilean glory-flower. Tendrils respond to touch and to chemical factors by curling, twining, or adhering to suitable structures or hosts. Tendrils vary greatly in size from a few centimeters up to 27 inches for Nepenthes harryana The chestnut vine can have tendrils up to 20.5 inches in length. Normally there is only one simple or branched tendril at each node, but the aardvark cucumber can have as many as eight.

<span class="mw-page-title-main">Ultrastructure</span> Detail hidden to optical microscopes

Ultrastructure is the architecture of cells and biomaterials that is visible at higher magnifications than found on a standard optical light microscope. This traditionally meant the resolution and magnification range of a conventional transmission electron microscope (TEM) when viewing biological specimens such as cells, tissue, or organs. Ultrastructure can also be viewed with scanning electron microscopy and super-resolution microscopy, although TEM is a standard histology technique for viewing ultrastructure. Such cellular structures as organelles, which allow the cell to function properly within its specified environment, can be examined at the ultrastructural level.

Ergastic substances are non-protoplasmic materials found in cells. The living protoplasm of a cell is sometimes called the bioplasm and distinct from the ergastic substances of the cell. The latter are usually organic or inorganic substances that are products of metabolism, and include crystals, oil drops, gums, tannins, resins and other compounds that can aid the organism in defense, maintenance of cellular structure, or just substance storage. Ergastic substances may appear in the protoplasm, in vacuoles, or in the cell wall.

<i>Philodendron</i> Genus of flowering plants

Philodendron is a large genus of flowering plants in the family Araceae. As of September 2015, the World Checklist of Selected Plant Families accepted 489 species; other sources accept different numbers. Regardless of number of species, the genus is the second-largest member of the family Araceae, after genus Anthurium. Taxonomically, the genus Philodendron is still poorly known, with many undescribed species. Many are grown as ornamental and indoor plants. The name derives from the Greek words philo- 'love, affection' and dendron 'tree'. The generic name, Philodendron, is often used as the English name.

<i>Alocasia</i> Genus of flowering plant

Alocasia is a genus of rhizomatous or tuberous, broad-leaved, perennial, flowering plants from the family Araceae. There are about 90 accepted species native to tropical and subtropical Asia and eastern Australia. Around the world, many growers widely cultivate a range of hybrids and cultivars as ornamentals.

<span class="mw-page-title-main">Sclereid</span> Plant tissue type

Sclereids are a reduced form of sclerenchyma cells with highly thickened, lignified cellular walls that form small bundles of durable layers of tissue in most plants. The presence of numerous sclereids form the cores of apples and produce the gritty texture of guavas.

<span class="mw-page-title-main">Raphide</span> Plant chemical defense

Raphides are needle-shaped crystals of calcium oxalate monohydrate or calcium carbonate as aragonite, found in more than 200 families of plants. Both ends are needle-like, but raphides tend to be blunt at one end and sharp at the other.

<i>Oxalis pes-caprae</i> Species of flowering plant in the wood sorrel family

Oxalis pes-caprae is a species of tristylous yellow-flowering plant in the wood sorrel family Oxalidaceae. Oxalis cernua is a less common synonym for this species. Some of the most common names for the plant reference its sour taste owing to oxalic acid present in its tissues. Indigenous to South Africa, the plant has become a pest plant in different parts of the world that is difficult to eradicate because of how it propagates through underground bulbs.

<span class="mw-page-title-main">Opuntioideae</span> Subfamily of cacti

Opuntioideae is a subfamily of the cactus family, Cactaceae. It contains 15 genera divided into five tribes. The subfamily encompasses roughly 220–250 species, and is geographically distributed throughout the New World from Canada, to Argentina. Members of this subfamily have diverse habits, including small geophytes, hemispherical cushions, shrubs, trees, and columnar cacti consisting of indeterminate branches or determinate terete or spherical segments.

Persin is a fungicidal toxin present in the avocado. Persin is an oil-soluble compound structurally similar to a fatty acid, a colourless oil, and it leaches into the body of the fruit from the seeds.

<span class="mw-page-title-main">Druse (botany)</span>

A druse is a group of crystals of calcium oxalate, silicates, or carbonates present in plants, and are thought to be a defense against herbivory due to their toxicity. Calcium oxalate (Ca(COO)2, CaOx) crystals are found in algae, angiosperms and gymnosperms in a total of more than 215 families. These plants accumulate oxalate in the range of 3–80% (w/w) of their dry weight through a biomineralization process in a variety of shapes. Araceae have numerous druses, multi-crystal druses and needle-shaped raphide crystals of CaOx present in the tissue. Druses are also found in leaves and bud scales of Prunus, Rosa, Allium, Vitis, Morus and Phaseolus.

<span class="mw-page-title-main">Commelinoideae</span> Subfamily of flowering plants

Commelinoideae is a subfamily of monocotyledonous plants in the dayflower family (Commelinaceae). It is one of two subfamilies within the Commelinaceae and includes 39 genera and all but 12 of the family's several hundred known species. The subfamily is further broken down into two tribes, the Tradescantieae, which includes 26 genera and about 300 species, and the Commelineae, which contains 13 genera and about 350 species.

<i>Alocasia fornicata</i> Species of flowering plant

Alocasia fornicata is a plant species of many-nerved, broad-leaved, rhizomatous or tuberous perennials from the family Araceae, native to Indochina and to the Indian Subcontinent. It characteristically grows 2' - 3 ' in height with slightly pink petiole, triangular wide shaped leaves and a horizontally growing stolon.

<i>Cartonema</i> Genus of flowering plants

Cartonema is a genus of perennial or annual monocotyledonous flowering plants in the dayflower family. It is restricted to Australia and nearby Trangan Island, which is part of Indonesia. It is the earliest diverging member of its family and has a number of traits that are unique within it, such as non-succulent leaves and a lack of raphides. Its distinctive features led to the genus to once be considered part of its own separate family, Cartonemataceae. However, analysis of DNA sequences, as well as many common anatomical characters, has supported its relationship with the Commelinaceae. It contains about 11 species.

Crystallopathy is a harmful state or disease associated with the formation and aggregation of crystals in tissues or cavities, or in other words, a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring.

References

  1. Sachs 1874. "Botany"
  2. Coté GG (July 2009). "Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae)". American Journal of Botany. 96 (7): 1245–54. doi: 10.3732/ajb.0800276 . PMID   21628273.
  3. Hara T, Kobayashi E, Ohtsubo K, Kumada S, Kanazawa M, Abe T, et al. (2015-03-05). Beemster GT (ed.). "Organ-level analysis of idioblast patterning in Egeria densa Planch. leaves". PLOS ONE. 10 (3): e0118965. Bibcode:2015PLoSO..1018965H. doi: 10.1371/journal.pone.0118965 . PMC   4351012 . PMID   25742311.
  4. Lersten NR, Krueger L, Curtis JD (May 2002). "Tracheoid Variation among Bignoniaceae Seed Wings, with Emphasis on Campsis radicans". International Journal of Plant Sciences. 163 (3): 369–378. doi:10.1086/339238. ISSN   1058-5893. S2CID   85185042.
  5. Domergue F, Helms GL, Prusky D, Browse J (May 2000). "Antifungal compounds from idioblast cells isolated from avocado fruits". Phytochemistry. 54 (2): 183–9. Bibcode:2000PChem..54..183D. doi:10.1016/S0031-9422(00)00055-8. PMID   10872209.
  6. Coté GG (July 2009). "Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae)". American Journal of Botany. 96 (7): 1245–54. doi: 10.3732/ajb.0800276 . PMID   21628273.
  7. Tulyananda T, Nilsen ET (June 2017). "Rhododendron". American Journal of Botany. 104 (6): 828–839. doi: 10.3732/ajb.1600425 . PMID   28626039.
  8. Li M, Sack FD (October 2014). "Myrosin idioblast cell fate and development are regulated by the Arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking". The Plant Cell. 26 (10): 4053–66. doi:10.1105/tpc.114.129726. PMC   4247575 . PMID   25304201.