Indra's Pearls (book)

Last updated

Indra's Pearls
Indra's Pearls book cover.jpg
Author David Mumford, Caroline Series, David Wright
CountryUnited Kingdom
LanguageEnglish
SubjectGeometry
Genre Non-fiction
Publisher Cambridge University Press
Publication date
2002, 2015
Media typePrint (hardback, paperback)
ISBN 978-0-521-35253-6
OCLC 49859120

Indra's Pearls: The Vision of Felix Klein is a geometry book written by David Mumford, Caroline Series and David Wright, and published by Cambridge University Press in 2002 and 2015.

Contents

The book explores the patterns created by iterating conformal maps of the complex plane called Möbius transformations, and their connections with symmetry and self-similarity. These patterns were glimpsed by German mathematician Felix Klein, but modern computer graphics allows them to be fully visualised and explored in detail.

Title

The book's title refers to Indra's net, a metaphorical object described in the Buddhist text of the Flower Garland Sutra . Indra's net consists of an infinite array of gossamer strands and pearls. The frontispiece to Indra's Pearls quotes the following description:

In the glistening surface of each pearl are reflected all the other pearls ... In each reflection, again are reflected all the infinitely many other pearls, so that by this process, reflections of reflections continue without end.

The allusion to Felix Klein's "vision" is a reference to Klein's early investigations of Schottky groups and hand-drawn plots of their limit sets. It also refers to Klein's wider vision of the connections between group theory, symmetry and geometry - see Erlangen program.

Contents

The contents of Indra's Pearls are as follows:

The Apollonian gasket, which appears in Chapter 7. Apollonian gasket.svg
The Apollonian gasket, which appears in Chapter 7.

Importance

Indra's Pearls is unusual because it aims to give the reader a sense of the development of a real-life mathematical investigation, rather than just a formal presentation of the final results. It covers a broad span of topics, showing interconnections among geometry, number theory, abstract algebra and computer graphics. It shows how computers are used by contemporary mathematicians. It uses computer graphics, diagrams and cartoons to enhance its written explanations. In the authors' own words:

Our dream is that this book will reveal to our readers that mathematics is not alien and remote but just a very human exploration of the patterns of the world, one which thrives on play and surprise and beauty - Indra's Pearls p viii.

Related Research Articles

<span class="mw-page-title-main">Fractal</span> Infinitely detailed mathematical structure

In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory.

<span class="mw-page-title-main">Sierpiński triangle</span> Fractal composed of triangles

The Sierpiński triangle, also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński, but appeared as a decorative pattern many centuries before the work of Sierpiński.

<span class="mw-page-title-main">Möbius strip</span> Non-orientable surface with one edge

In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.

Experimental mathematics is an approach to mathematics in which computation is used to investigate mathematical objects and identify properties and patterns. It has been defined as "that branch of mathematics that concerns itself ultimately with the codification and transmission of insights within the mathematical community through the use of experimental exploration of conjectures and more informal beliefs and a careful analysis of the data acquired in this pursuit."

In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">David Mumford</span> American mathematician

David Bryant Mumford is an American mathematician known for his work in algebraic geometry and then for research into vision and pattern theory. He won the Fields Medal and was a MacArthur Fellow. In 2010 he was awarded the National Medal of Science. He is currently a University Professor Emeritus in the Division of Applied Mathematics at Brown University.

In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R), and sometimes it is allowed to be a Kleinian group which is conjugate to a subgroup of PSL(2,R).

<span class="mw-page-title-main">Iterated function system</span> Method for the construction of fractals

In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981.

<span class="mw-page-title-main">Apollonian gasket</span> Fractal composed of tangent circles

In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga.

<span class="mw-page-title-main">Kleinian group</span> Discrete group of Möbius transformations

In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

<span class="mw-page-title-main">Schottky group</span>

In mathematics, a Schottky group is a special sort of Kleinian group, first studied by Friedrich Schottky.

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

The following is a timeline of key developments of geometry:

In the mathematical theory of Kleinian groups, Bers slices and Maskit slices, named after Lipman Bers and Bernard Maskit, are certain slices through the moduli space of Kleinian groups.

In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by Pfluger (1961) and Tienari (1962), in the older literature they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems.

<span class="mw-page-title-main">Conformal loop ensemble</span>

A conformal loop ensemble (CLEκ) is a random collection of non-crossing loops in a simply connected, open subset of the plane. These random collections of loops are indexed by a parameter κ, which may be any real number between 8/3 and 8. CLEκ is a loop version of the Schramm–Loewner evolution: SLEκ is designed to model a single discrete random interface, while CLEκ models a full collection of interfaces.

<span class="mw-page-title-main">Caroline Series</span> English mathematician (born 1951)

Caroline Mary Series is an English mathematician known for her work in hyperbolic geometry, Kleinian groups and dynamical systems.

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

References