The inex (plural inexes) is an eclipse cycle of 10,571.95 days (about 29 years minus 20 days). The cycle was first described in modern times by Crommelin in 1901, but was named by George van den Bergh who studied it in detail half a century later. [1] One inex after an eclipse of a particular saros series there will be an eclipse in the next saros series, unless the latter saros series has come to an end.
It corresponds to:
The 30.5 eclipse years means that if there is a solar eclipse (or lunar eclipse), then after one inex a New Moon (resp. Full Moon) will take place at the opposite node of the orbit of the Moon, and under these circumstances another eclipse can occur.
Unlike the saros, the inex is not close to an integer number of anomalistic months so successive eclipses are not very similar in their appearance and characteristics. From the remainder of 0.67351, being near 2⁄3, every third eclipse will have a similar position in the moon's elliptical orbit and apparent diameter, so the quality of the solar eclipse (total versus annular) will repeat in these groupings of 3 cycles (87 years minus 2 months), called triads.
Inex series last much longer than saros series. For example, inex series 30 started in saros series −245 in 9435 BC and will continue well beyond 15,000 AD. But inex series are not unbroken: at the beginning and end of a series, eclipses may fail to occur. However once settled down, inex series are very stable and run for many thousands of years. For example, series 30 has produced eclipses every 29 years since saros series −197 in 8045 BC, including most recently the solar eclipse of February 5, 2000. [2]
An inex also is close to an integer number of days (10,571.95) so solar eclipses on average take place at about the same geographical longitude at successive events, although variations of the moon's speed at different points of its orbit mask this relation. In addition sequential events occur at opposite geographical latitudes because the eclipses occur at opposite nodes. This is in contrast to the better known saros, which has a period of about 6,585+1⁄3 days, so successive solar eclipses tend to take place about 120° in longitude apart on the globe (although at the same node and hence at about the same geographical latitude).
The significance of the inex cycle is not in the prediction, but in the organization of eclipses: any eclipse cycle, and indeed the interval between any two eclipses, can be expressed as a combination of saros and inex intervals.
The following fourteen eclipses from part of inex series 52, which has been yielding eclipses every 29 years since saros series −115 in 5275 BC and will continue to do so beyond 15,000 AD. [3]
These eclipses are part of Lunar Inex Series 40.
A saros-inex panorama has been produced by Luca Quaglia and John Tilley. It shows 61775 solar eclipses from −11000 (11001 BC) to +15000. [4]
Each column of the graph is a complete Saros series which progresses smoothly from partial eclipses into total or annular eclipses and back into partials. Each graph row represents an inex series.
The lifetime of each inex series is not simple due to long-term period variations in the synodic and draconic month lengths. One can see from the data file that in the future (around saros series 300) the graph is horizontal (meaning that after an interval of an inex the moon will be at the same latitude), whereas at the beginning of the panorama around 11,000 BC for the moon to come back to the same latitude at another eclipse required about one saros for every ten inex. This implies that back then 3580+223 or 3803 synodic months equaled 3885+242 or 4127 draconic months. So a synodic month was about 1.0851959 draconic months, as compared to about 1.0851958 today. This decrease by about 0.1 ppm can be compared to the decrease in the length of a tropical year by about 1 ppm in the last 10,000 years (see Tropical year). (Note that if the length of a sidereal month were constant, then a decrease in the length of a year would cause an increase in the length of a synodic month.) One source states that the draconic month is increasing by about 0.4 seconds (ca 0.16 ppm) per millennium whereas the synodic month is increasing by about 0.2 seconds (ca 0.08 ppm) per millennium, but doesn't explain why the draconic month is increasing faster. [5]
From the data file we can see that eclipses recur with a period of a combination of 15 inex and 1 saros (5593 synodic months, 165164.58 days, or 452.2 tropical years) throughout the whole panorama (26,000 years), for example from the eclipse of saros series −290, inex series 2 (slightly off the panorama to the left) to the eclipse of saros series 580, inex series 60 on the right-side edge of the panorama. Similar cycles with more or less than 15 inex per saros also cover the whole panorama.
Lunar eclipses can also be plotted in a similar diagram, this diagram covering 1000 AD to 2500 AD. The yellow diagonal band represents all the eclipses from 1900 to 2100. This graph immediately illuminates that this 1900–2100 period contains an above average number of total lunar eclipses compared to other adjacent centuries.
Eclipses may occur repeatedly, separated by certain intervals of time: these intervals are called eclipse cycles. The series of eclipses separated by a repeat of one of these intervals is called an eclipse series.
The saros is a period of exactly 223 synodic months, approximately 6585.321 days, or 18 years plus 10, 11, or 12 days, and 8 hours, that can be used to predict eclipses of the Sun and Moon. One saros period after an eclipse, the Sun, Earth, and Moon return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur, in what is referred to as an eclipse cycle. A sar is one half of a saros.
The Greek astronomer Hipparchus introduced three cycles that have been named after him in later literature.
A total lunar eclipse will occur at the Moon’s descending node of orbit on Saturday, May 26, 2040, with an umbral magnitude of 1.5365. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.4 days before perigee, the Moon's apparent diameter will be larger.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, June 26, 2029, with an umbral magnitude of 1.8452. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 3.7 days before perigee, the Moon's apparent diameter will be larger.
A total lunar eclipse took place on Friday, August 6, 1971, the second of two total lunar eclipses in 1971. A dramatic total eclipse lasting 1 hour, 39 minutes and 24.8 seconds plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours, 35 minutes and 31.9 seconds in total. Occurring only 2.2 days before perigee, the Moon's apparent diameter was 3.6% larger than average and the moon passed through the center of the Earth's shadow.
A total lunar eclipse will occur at the Moon’s descending node of orbit on Thursday, June 6, 2058, with an umbral magnitude of 1.6628. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Thursday, February 11, 2055, with an umbral magnitude of 1.2258. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 15 hours before perigee, the Moon's apparent diameter will be larger.
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Monday, May 6, 2069, with an umbral magnitude of 1.3242. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.3 days after apogee, the Moon's apparent diameter will be smaller.
A partial solar eclipse occurred at the Moon’s descending node of orbit on Friday, July 1, 2011, with a magnitude of 0.0971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, June 21, 1982, with a magnitude of 0.6168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit between Wednesday, July 14 and Thursday, July 15, 2083, with a magnitude of 0.0168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, June 17, 1928, with a magnitude of 0.0375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
The tzolkinex is an eclipse cycle equal to a period of two saros minus one inex. As consecutive eclipses in an inex series belongs to the next consecutive saros series, each consecutive Tzolkinex belongs to the previous saros series.