Solar eclipse of September 9, 1904

Last updated
Solar eclipse of September 9, 1904
SE1904Sep09T.png
Map
Type of eclipse
NatureTotal
Gamma −0.1625
Magnitude 1.0709
Maximum eclipse
Duration380 s (6 min 20 s)
Coordinates 3°42′S134°30′W / 3.7°S 134.5°W / -3.7; -134.5
Max. width of band234 km (145 mi)
Times (UTC)
Greatest eclipse20:44:21
References
Saros 133 (39 of 72)
Catalog # (SE5000) 9291

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, [1] [2] [3] [4] with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 1.5 hours after perigee (on September 9, 1904, at 19:10 UTC), the Moon's apparent diameter was larger. [5]

Contents

Totality was visible from German New Guinea (the part now belonging to Marshall Islands) on September 10 and Chile on September 9. A partial eclipse was visible for parts of Oceania and Western South America.

The event is mentioned in James Joyce's novel Ulysses .

Observations

The National Astronomical Observatory of Chile established an observation station in Taltal, Antofagasta, but the eclipse was clouded out and could not be seen. In the capital city Santiago, a partial eclipse was seen just before sunset. [6]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [7]

September 9, 1904 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1904 September 09 at 18:07:46.2 UTC
First Umbral External Contact1904 September 09 at 19:01:33.0 UTC
First Central Line1904 September 09 at 19:02:57.8 UTC
First Umbral Internal Contact1904 September 09 at 19:04:22.7 UTC
First Penumbral Internal Contact1904 September 09 at 19:59:18.7 UTC
Greatest Duration1904 September 09 at 20:42:32.1 UTC
Ecliptic Conjunction1904 September 09 at 20:42:41.4 UTC
Greatest Eclipse1904 September 09 at 20:44:20.7 UTC
Equatorial Conjunction1904 September 09 at 20:49:31.5 UTC
Last Penumbral Internal Contact1904 September 09 at 21:29:14.6 UTC
Last Umbral Internal Contact1904 September 09 at 22:24:15.2 UTC
Last Central Line1904 September 09 at 22:25:39.9 UTC
Last Umbral External Contact1904 September 09 at 22:27:04.6 UTC
Last Penumbral External Contact1904 September 09 at 23:20:53.1 UTC
September 9, 1904 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.07094
Eclipse Obscuration1.14691
Gamma−0.16252
Sun Right Ascension11h11m04.6s
Sun Declination+05°15'01.3"
Sun Semi-Diameter15'53.2"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension11h10m52.8s
Moon Declination+05°05'30.9"
Moon Semi-Diameter16'43.6"
Moon Equatorial Horizontal Parallax1°01'23.4"
ΔT3.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September 1904
September 9
Ascending node (new moon)
September 24
Descending node (full moon)
SE1904Sep09T.png Lunar eclipse chart close-1904Sep24.png
Total solar eclipse
Solar Saros 133
Penumbral lunar eclipse
Lunar Saros 145

Eclipses in 1904

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 133

Inex

Triad

Solar eclipses of 1902–1906

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [8]

The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1902 to 1906
Descending node Ascending node
SarosMapGammaSarosMapGamma
108 April 8, 1902
SE1902Apr08P.png
Partial
1.5024113October 1, 1902
118 March 29, 1903
SE1903Mar29A.png
Annular
0.8413123 September 21, 1903
SE1903Sep21T.png
Total
−0.8967
128 March 17, 1904
SE1904Mar17A.png
Annular
0.1299133 September 9, 1904
SE1904Sep09T.png
Total
−0.1625
138 March 6, 1905
SE1905Mar06A.png
Annular
−0.5768143
PSM V68 D565 Sun corona of August 30 1905 taken with 40 foot camera.png
August 30, 1905
SE1905Aug30T.png
Total
0.5708
148 February 23, 1906
SE1906Feb23P.png
Partial
−1.2479153 August 20, 1906
SE1906Aug20P.png
Partial
1.3731

Saros 133

This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435 through January 13, 1526; a hybrid eclipse on January 24, 1544; and total eclipses from February 3, 1562 through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 1 minutes, 14 seconds on November 30, 1453, and the longest duration of totality was produced by member 61 at 6 minutes, 50 seconds on August 7, 1850. All eclipses in this series occur at the Moon’s ascending node of orbit. [9]

Series members 34–55 occur between 1801 and 2200:
343536
SE1814Jul17T.png
July 17, 1814
SE1832Jul27T.png
July 27, 1832
SE1850Aug07T.png
August 7, 1850
373839
SE1868Aug18T.png
August 18, 1868
SE1886Aug29T.png
August 29, 1886
SE1904Sep09T.png
September 9, 1904
404142
SE1922Sep21T.png
September 21, 1922
SE1940Oct01T.png
October 1, 1940
SE1958Oct12T.png
October 12, 1958
434445
SE1976Oct23T.png
October 23, 1976
SE1994Nov03T.png
November 3, 1994
SE2012Nov13T.png
November 13, 2012
464748
SE2030Nov25T.png
November 25, 2030
SE2048Dec05T.png
December 5, 2048
SE2066Dec17T.png
December 17, 2066
495051
SE2084Dec27T.png
December 27, 2084
SE2103Jan08T.png
January 8, 2103
SE2121Jan19T.png
January 19, 2121
525354
SE2139Jan30T.png
January 30, 2139
SE2157Feb09T.png
February 9, 2157
SE2175Feb21T.png
February 21, 2175
55
SE2193Mar03T.png
March 3, 2193

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1817May16A.gif
May 16, 1817
(Saros 125)
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
(Saros 126)
SE1839Mar15T.gif
March 15, 1839
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1871Dec12T.png
December 12, 1871
(Saros 130)
SE1882Nov10A.gif
November 10, 1882
(Saros 131)
SE1893Oct09A.gif
October 9, 1893
(Saros 132)
SE1904Sep09T.png
September 9, 1904
(Saros 133)
SE1915Aug10A.png
August 10, 1915
(Saros 134)
SE1926Jul09A.png
July 9, 1926
(Saros 135)
SE1937Jun08T.png
June 8, 1937
(Saros 136)
SE1948May09A.png
May 9, 1948
(Saros 137)
SE1959Apr08A.png
April 8, 1959
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE1992Jan04A.png
January 4, 1992
(Saros 141)
SE2002Dec04T.png
December 4, 2002
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2024Oct02A.png
October 2, 2024
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2046Aug02T.png
August 2, 2046
(Saros 146)
SE2057Jul01A.png
July 1, 2057
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2079May01T.png
May 1, 2079
(Saros 149)
SE2090Mar31P.png
March 31, 2090
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
(Saros 152)
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
(Saros 153)
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
(Saros 154)
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
(Saros 155)
Saros156 09van69 SE2155Sep26A.jpg
September 26, 2155
(Saros 156)
SE2166Aug25A.png
August 25, 2166
(Saros 157)
Saros158 07van70 SE2177Jul25P.jpg
July 25, 2177
(Saros 158)
Saros159 04van70 SE2188Jun24P.jpg
June 24, 2188
(Saros 159)
Saros160 02van71 SE2199May24P.jpg
May 24, 2199
(Saros 160)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1817Nov09T.png
November 9, 1817
(Saros 130)
SE1846Oct20A.png
October 20, 1846
(Saros 131)
SE1875Sep29A.png
September 29, 1875
(Saros 132)
SE1904Sep09T.png
September 9, 1904
(Saros 133)
SE1933Aug21A.png
August 21, 1933
(Saros 134)
SE1962Jul31A.png
July 31, 1962
(Saros 135)
SE1991Jul11T.png
July 11, 1991
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2049May31A.png
May 31, 2049
(Saros 138)
SE2078May11T.png
May 11, 2078
(Saros 139)
SE2107Apr23A.png
April 23, 2107
(Saros 140)
SE2136Apr01A.png
April 1, 2136
(Saros 141)
SE2165Mar12T.png
March 12, 2165
(Saros 142)
SE2194Feb21A.png
February 21, 2194
(Saros 143)

Notes

  1. "September 9, 1904 Total Solar Eclipse". timeanddate. Retrieved 30 July 2024.
  2. "To-day's eclipse". Evening Post. Nottingham, Nottinghamshire, England. 1904-09-09. p. 2. Retrieved 2023-10-27 via Newspapers.com.
  3. "SOLAR ECLIPSE". The Hawaiian Star. Honolulu, Hawaii. 1904-09-09. p. 8. Retrieved 2023-10-27 via Newspapers.com.
  4. "Solar Eclipse and Earthquake Shock". Altoona Tribune. Altoona, Pennsylvania. 1904-09-10. p. 1. Retrieved 2023-10-27 via Newspapers.com.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 30 July 2024.
  6. W. W. Campbell (10 December 1904). "The Total Eclipse of September 9, 1904". Publications of the Astronomical Society of the Pacific. 16. Astronomical Society of the Pacific: 266–267.
  7. "Total Solar Eclipse of 1904 Sep 09". EclipseWise.com. Retrieved 30 July 2024.
  8. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. "NASA - Catalog of Solar Eclipses of Saros 133". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 22, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Tokelau, Cook Islands, French Polynesia, Chile and Argentina. This solar eclipse occurred over 3 months after the final game of 1958 FIFA World Cup.

<span class="mw-page-title-main">Solar eclipse of September 21, 1922</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 21, 1922, with a magnitude of 1.0678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The greatest eclipse occurred exactly at perigee.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya, Egypt, Mandatory Palestine including Jerusalem and Amman, French Mandate for Syria and the Lebanon, Iraq including Baghdad, Persia, Afghanistan, British Raj, Siam, Dutch East Indies, North Borneo, and Australia.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1915</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, August 10, 1915, with a magnitude of 0.9853. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, with the only land being Haha-jima Group in Japan, where the eclipse occurred on August 11 because it is west of International Date Line.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 22, 1911</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, October 22, 1911, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Russian Empire, China, French Indochina, Philippines, Dutch East Indies, Territory of Papua including the capital city Port Moresby, and British Western Pacific Territories.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of March 28, 1922</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, March 28, 1922, with a magnitude of 0.9381. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru, Brazil, French West Africa, British Gambia including capital Banjul, French Algeria, Italian Libya, Egypt, Kingdom of Hejaz and Sultanate of Nejd, and British Kuwait.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 9, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in Japan's South Seas Mandate and Wake Island on July 10 (Saturday), and Midway Atoll on July 9 (Friday).

References