Solar eclipse of December 25, 1935

Last updated
Solar eclipse of December 25, 1935
SE1935Dec25A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.9228
Magnitude 0.9752
Maximum eclipse
Duration90 s (1 min 30 s)
Coordinates 83°30′S9°24′E / 83.5°S 9.4°E / -83.5; 9.4
Max. width of band234 km (145 mi)
Times (UTC)
Greatest eclipse17:59:52
References
Saros 121 (56 of 71)
Catalog # (SE5000) 9366

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 25, 1935, [1] with a magnitude of 0.9752. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.7 days after apogee (on December 18, 1935, at 2:40 UTC) and 4.8 days before perigee (on December 30, 1935, at 15:10 UTC). [2]

Contents

This was the last of five solar eclipses in 1935, with the others occurring on January 5, February 3, June 30, and July 30. The next time this will occur is 2206.

Annularity was visible from parts of Antarctica. A partial eclipse was visible for parts of Antarctica, southern South America, and New Zealand.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

December 25, 1935 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1935 December 25 at 15:42:21.2 UTC
First Umbral External Contact1935 December 25 at 17:15:44.8 UTC
First Central Line1935 December 25 at 17:18:14.4 UTC
Greatest Duration1935 December 25 at 17:18:14.4 UTC
First Umbral Internal Contact1935 December 25 at 17:20:52.1 UTC
Equatorial Conjunction1935 December 25 at 17:47:27.1 UTC
Ecliptic Conjunction1935 December 25 at 17:49:48.0 UTC
Greatest Eclipse1935 December 25 at 17:59:51.8 UTC
Last Umbral Internal Contact1935 December 25 at 18:39:02.7 UTC
Last Central Line1935 December 25 at 18:41:37.4 UTC
Last Umbral External Contact1935 December 25 at 18:44:04.0 UTC
Last Penumbral External Contact1935 December 25 at 20:17:22.0 UTC
December 25, 1935 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.97525
Eclipse Obscuration0.95112
Gamma−0.92279
Sun Right Ascension18h13m12.8s
Sun Declination-23°24'47.6"
Sun Semi-Diameter16'15.8"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension18h13m41.2s
Moon Declination-24°17'40.0"
Moon Semi-Diameter15'46.2"
Moon Equatorial Horizontal Parallax0°57'52.6"
ΔT23.7 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1935–January 1936
December 25
Ascending node (new moon)
January 8
Descending node (full moon)
SE1935Dec25A.png Lunar eclipse chart close-1936Jan08.png
Annular solar eclipse
Solar Saros 121
Total lunar eclipse
Lunar Saros 133

Eclipses in 1935

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 121

Inex

Triad

Solar eclipses of 1935–1938

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on February 3, 1935 and July 30, 1935 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1935 to 1938
Ascending node Descending node
SarosMapGammaSarosMapGamma
111 January 5, 1935
SE1935Jan05P.png
Partial
−1.5381116 June 30, 1935
SE1935Jun30P.png
Partial
1.3623
121 December 25, 1935
SE1935Dec25A.png
Annular
−0.9228126 June 19, 1936
SE1936Jun19T.png
Total
0.5389
131 December 13, 1936
SE1936Dec13A.png
Annular
−0.2493136
Kanton total eclipse June8, 1937.jpg
Totality in Kanton Island,
Kiribati
June 8, 1937
SE1937Jun08T.png
Total
−0.2253
141 December 2, 1937
SE1937Dec02A.png
Annular
0.4389146 May 29, 1938
SE1938May29T.png
Total
−0.9607
151 November 21, 1938
SE1938Nov21P.png
Partial
1.1077

Saros 121

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 49–70 occur between 1801 and 2200:
495051
SE1809Oct09T.gif
October 9, 1809
SE1827Oct20H.gif
October 20, 1827
SE1845Oct30H.gif
October 30, 1845
525354
SE1863Nov11A.gif
November 11, 1863
SE1881Nov21A.png
November 21, 1881
SE1899Dec03A.png
December 3, 1899
555657
SE1917Dec14A.png
December 14, 1917
SE1935Dec25A.png
December 25, 1935
SE1954Jan05A.png
January 5, 1954
585960
SE1972Jan16A.png
January 16, 1972
SE1990Jan26A.png
January 26, 1990
SE2008Feb07A.png
February 7, 2008
616263
SE2026Feb17A.png
February 17, 2026
SE2044Feb28A.png
February 28, 2044
SE2062Mar11P.png
March 11, 2062
646566
SE2080Mar21P.png
March 21, 2080
SE2098Apr01P.png
April 1, 2098
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
676869
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
Saros121 68van71 SE2152May04P.jpg
May 4, 2152
Saros121 69van71 SE2170May16P.jpg
May 16, 2170
70
Saros121 70van71 SE2188May26P.jpg
May 26, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25October 12July 31–August 1May 19–20March 7
111113115117119
SE1916Dec24P.png
December 24, 1916
SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121123125127129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131133135137139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141143145147149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151153155
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jan01P.gif
January 1, 1805
(Saros 109)
SE1826Oct31P.gif
October 31, 1826
(Saros 111)
SE1848Aug28P.gif
August 28, 1848
(Saros 113)
SE1859Jul29P.gif
July 29, 1859
(Saros 114)
SE1870Jun28P.gif
June 28, 1870
(Saros 115)
SE1881May27P.gif
May 27, 1881
(Saros 116)
SE1892Apr26T.png
April 26, 1892
(Saros 117)
SE1903Mar29A.png
March 29, 1903
(Saros 118)
SE1914Feb25A.png
February 25, 1914
(Saros 119)
SE1925Jan24T.png
January 24, 1925
(Saros 120)
SE1935Dec25A.png
December 25, 1935
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1957Oct23T.png
October 23, 1957
(Saros 123)
SE1968Sep22T.png
September 22, 1968
(Saros 124)
SE1979Aug22A.png
August 22, 1979
(Saros 125)
SE1990Jul22T.png
July 22, 1990
(Saros 126)
SE2001Jun21T.png
June 21, 2001
(Saros 127)
SE2012May20A.png
May 20, 2012
(Saros 128)
SE2023Apr20H.png
April 20, 2023
(Saros 129)
SE2034Mar20T.png
March 20, 2034
(Saros 130)
SE2045Feb16A.png
February 16, 2045
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2077Nov15A.png
November 15, 2077
(Saros 134)
SE2088Oct14A.png
October 14, 2088
(Saros 135)
SE2099Sep14T.png
September 14, 2099
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2121Jul14A.png
July 14, 2121
(Saros 138)
SE2132Jun13T.png
June 13, 2132
(Saros 139)
SE2143May14A.png
May 14, 2143
(Saros 140)
SE2154Apr12A.png
April 12, 2154
(Saros 141)
SE2165Mar12T.png
March 12, 2165
(Saros 142)
SE2176Feb10A.png
February 10, 2176
(Saros 143)
SE2187Jan09A.png
January 9, 2187
(Saros 144)
SE2197Dec09T.png
December 9, 2197
(Saros 145)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1849Feb23A.gif
February 23, 1849
(Saros 118)
SE1878Feb02A.gif
February 2, 1878
(Saros 119)
SE1907Jan14T.png
January 14, 1907
(Saros 120)
SE1935Dec25A.png
December 25, 1935
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2022Oct25P.png
October 25, 2022
(Saros 124)
SE2051Oct04P.png
October 4, 2051
(Saros 125)
SE2080Sep13P.png
September 13, 2080
(Saros 126)
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
(Saros 127)
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
(Saros 128)
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
(Saros 129)
SE2196Jun26T.png
June 26, 2196
(Saros 130)

Notes

  1. "December 25, 1935 Annular Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. "Annular Solar Eclipse of 1935 Dec 25". EclipseWise.com. Retrieved 3 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 26, 1990</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 26, 2028</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, January 26, 2028, with a magnitude of 0.9208. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.

<span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus, it will be the first central solar eclipse since June 1954.

<span class="mw-page-title-main">Solar eclipse of January 4, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2066</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 3, 1946</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, January 3, 1946, with a magnitude of 0.5529. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 12, 1931, with a magnitude of 0.0471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References