Solar eclipse of November 13, 1993 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.0411 |
Magnitude | 0.928 |
Maximum eclipse | |
Coordinates | 69°36′S58°18′E / 69.6°S 58.3°E |
Times (UTC) | |
Greatest eclipse | 21:45:51 |
References | |
Saros | 123 (52 of 70) |
Catalog # (SE5000) | 9494 |
A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible at sunrise over parts of Australia on November 14 (Sunday), and ended at sunset over the southern tip of South America on November 13 (Saturday).
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]
Solar eclipse series sets from 1993 to 1996 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | May 21, 1993 Partial | 1.1372 | 123 | November 13, 1993 Partial | −1.0411 | |
128 Partial in Bismarck, ND, USA | May 10, 1994 Annular | 0.4077 | 133 Totality in Bolivia | November 3, 1994 Total | −0.3522 | |
138 | April 29, 1995 Annular | −0.3382 | 143 Totality in Dundlod, India | October 24, 1995 Total | 0.3518 | |
148 | April 17, 1996 Partial | −1.058 | 153 | October 12, 1996 Partial | 1.1227 |
This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]
Series members 42–63 occur between 1801 and 2200: | ||
---|---|---|
42 | 43 | 44 |
July 27, 1813 | August 7, 1831 | August 18, 1849 |
45 | 46 | 47 |
August 29, 1867 | September 8, 1885 | September 21, 1903 |
48 | 49 | 50 |
October 1, 1921 | October 12, 1939 | October 23, 1957 |
51 | 52 | 53 |
November 3, 1975 | November 13, 1993 | November 25, 2011 |
54 | 55 | 56 |
December 5, 2029 | December 16, 2047 | December 27, 2065 |
57 | 58 | 59 |
January 7, 2084 | January 19, 2102 | January 30, 2120 |
60 | 61 | 62 |
February 9, 2138 | February 21, 2156 | March 3, 2174 |
63 | ||
March 13, 2192 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between June 21, 1982 and June 21, 2058 | ||||
---|---|---|---|---|
June 21 | April 8–9 | January 26 | November 13–14 | September 1–2 |
117 | 119 | 121 | 123 | 125 |
June 21, 1982 | April 9, 1986 | January 26, 1990 | November 13, 1993 | September 2, 1997 |
127 | 129 | 131 | 133 | 135 |
June 21, 2001 | April 8, 2005 | January 26, 2009 | November 13, 2012 | September 1, 2016 |
137 | 139 | 141 | 143 | 145 |
June 21, 2020 | April 8, 2024 | January 26, 2028 | November 14, 2031 | September 2, 2035 |
147 | 149 | 151 | 153 | 155 |
June 21, 2039 | April 9, 2043 | January 26, 2047 | November 14, 2050 | September 2, 2054 |
157 | ||||
June 21, 2058 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 25, 1819 (Saros 107) | February 23, 1830 (Saros 108) | January 22, 1841 (Saros 109) | November 21, 1862 (Saros 111) | |
August 20, 1895 (Saros 114) | July 21, 1906 (Saros 115) | June 19, 1917 (Saros 116) | ||
May 19, 1928 (Saros 117) | April 19, 1939 (Saros 118) | March 18, 1950 (Saros 119) | February 15, 1961 (Saros 120) | January 16, 1972 (Saros 121) |
December 15, 1982 (Saros 122) | November 13, 1993 (Saros 123) | October 14, 2004 (Saros 124) | September 13, 2015 (Saros 125) | August 12, 2026 (Saros 126) |
July 13, 2037 (Saros 127) | June 11, 2048 (Saros 128) | May 11, 2059 (Saros 129) | April 11, 2070 (Saros 130) | March 10, 2081 (Saros 131) |
February 7, 2092 (Saros 132) | January 8, 2103 (Saros 133) | December 8, 2113 (Saros 134) | November 6, 2124 (Saros 135) | October 7, 2135 (Saros 136) |
September 6, 2146 (Saros 137) | August 5, 2157 (Saros 138) | July 5, 2168 (Saros 139) | June 5, 2179 (Saros 140) | May 4, 2190 (Saros 141) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
March 14, 1820 (Saros 117) | February 23, 1849 (Saros 118) | February 2, 1878 (Saros 119) |
January 14, 1907 (Saros 120) | December 25, 1935 (Saros 121) | December 4, 1964 (Saros 122) |
November 13, 1993 (Saros 123) | October 25, 2022 (Saros 124) | October 4, 2051 (Saros 125) |
September 13, 2080 (Saros 126) | August 26, 2109 (Saros 127) | August 5, 2138 (Saros 128) |
July 16, 2167 (Saros 129) | June 26, 2196 (Saros 130) |
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 2, 1997, with a magnitude of 0.8988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight and turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region spanning thousands of kilometres.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 9, 1964, with a magnitude of 0.3221. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, October 4, 2070, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, October 4, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 2, 2054, with a magnitude of 0.9793. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 31, 1902, with a magnitude of 0.696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, April 18, 1931, with a magnitude of 0.5107. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 21, 1938, with a magnitude of 0.7781. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.