Solar eclipse of November 3, 1994

Last updated
Solar eclipse of November 3, 1994
Diamond Ring, Total Solar Eclipse, Bolivia, 1994 (3183977692).jpg
SE1994Nov03T.png
Map
Type of eclipse
NatureTotal
Gamma −0.3522
Magnitude 1.0535
Maximum eclipse
Duration263 s (4 min 23 s)
Coordinates 35°24′S34°12′W / 35.4°S 34.2°W / -35.4; -34.2
Max. width of band189 km (117 mi)
Times (UTC)
Greatest eclipse13:40:06
References
Saros 133 (44 of 72)
Catalog # (SE5000) 9496

The solar eclipse of November 3, 1994, was a total solar eclipse visible within a band crossing South America from the Pacific to the Atlantic and visible as a partial solar eclipse everywhere on the continent. Totality was visible in Peru, northern Chile, Bolivia, northern Argentina, Paraguay, Brazil and Gough Island of British overseas territory of Saint Helena, Ascension and Tristan da Cunha. The Iguazu Falls, one of the largest waterfalls systems in the world, lay in the path of totality. Totality lasted about 4.4 minutes, so it was a relatively long total solar eclipse. Occurring only 10 hours and 2 minutes before perigee (Perigee on November 3, 1994, at 23:41 UTC, while greatest eclipse at 13:39 UTC), the moon's apparent diameter was also larger. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Contents

Images

SE1994Nov03T.gif

More details about the Total Solar Eclipse of 1994 November 3.

Eclipse Magnitude: 1.05351

Eclipse Obscuration: 1.10989

Gamma: -0.35216

Greatest Eclipse: 1994 November 3 at 13:39:05.4 UTC Greatest Eclipse: 1994 November 3 at 13:39:05.4 UTC Location of Greatest Eclipse: 35º21′22″ S, 34º13′21″ W, South Atlantic Ocean, 1,586 km (985.5 mi) off the coast of Brazil

Duration of Totality: 4 minutes, 23.28 seconds (263.28 seconds)

Sun Right Ascension: 14.57

Sun Declination: −15.1

Sun Diameter: 1934.8 arc-seconds

Moon Right Ascension: 14.56

Moon Declination: −15.4

Moon Diameter: 2006.0 arc-seconds

Saros Series: 133rd (44 of 72)

Eclipses of 1994

Solar eclipses 1993–1996

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [11]

Solar eclipse series sets from 1993 to 1996
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 1993 May 21
SE1993May21P.png
Partial
1.13720123 1993 November 13
SE1993Nov13P.png
Partial
−1.04114
128
Solar Eclipse 1994 (7160293094).jpg
Partial from Bismarck, ND
1994 May 10
SE1994May10A.png
Annular
0.40771133
Diamond Ring, Total Solar Eclipse, Bolivia, 1994 (3183977692).jpg
Totality at Bolivia
1994 November 3
SE1994Nov03T.png
Total
−0.35216
138 1995 April 29
SE1995Apr29A.png
Annular
−0.33821143
Hao WLCC 941103.jpg
Totality at Dundlod, India
1995 October 24
SE1995Oct24T.png
Total
0.35176
148 1996 April 17
SE1996Apr17P.png
Partial
−1.05796153 1996 October 12
SE1996Oct12P.png
Partial
1.12265

Saros 133

Solar Saros 133, repeating every 18 years, 11 days, contains 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435, through January 13, 1526, with a hybrid eclipse on January 24, 1544. It has total eclipses from February 3, 1562, through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. The longest duration of totality was 6 minutes, 49.97 seconds on August 7, 1850. [12] The total eclipses of this saros series are getting shorter and farther south with each iteration. All eclipses in this series occurs at the Moon’s ascending node.

Series members 30–56 occur between 1742 and 2211
303132
June 3, 1742 June 13, 1760 SE1778Jun24T.png
June 24, 1778
333435
July 4, 1796 July 17, 1814 July 27, 1832
363738
August 7, 1850 SE1868Aug18T.png
August 18, 1868
SE1886Aug29T.png
August 29, 1886
394041
SE1904Sep09T.png
September 9, 1904
SE1922Sep21T.png
September 21, 1922
SE1940Oct01T.png
October 1, 1940
424344
SE1958Oct12T.png
October 12, 1958
SE1976Oct23T.png
October 23, 1976
SE1994Nov03T.png
November 3, 1994
454647
SE2012Nov13T.png
November 13, 2012
SE2030Nov25T.png
November 25, 2030
SE2048Dec05T.png
December 5, 2048
484950
SE2066Dec17T.png
December 17, 2066
SE2084Dec27T.png
December 27, 2084
SE2103Jan08T.png
January 8, 2103
515253
SE2121Jan19T.png
January 19, 2121
SE2139Jan30T.png
January 30, 2139
SE2157Feb09T.png
February 9, 2157
545556
SE2175Feb21T.png
February 21, 2175
SE2193Mar03T.png
March 3, 2193
SE2211Mar15T.png
March 15, 2211

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11March 27–29January 15–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> 21st-century total solar eclipse

A total solar eclipse occurred on March 29, 2006. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

<span class="mw-page-title-main">Solar eclipse of July 22, 2009</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's descending node of the orbit on July 22, 2009, with a magnitude of 1.07991. It was the longest total solar eclipse during the 21st century; the longest total solar eclipse during the 3rd millennium will be on 16 July 2186. It lasted a maximum of 6 minutes and 38.86 seconds off the coast of Southeast Asia, causing tourist interest in eastern China, Pakistan, Japan, India, Nepal and Bangladesh. Its greatest magnitude was 1.07991, occurring only 6 hours, 18 minutes after perigee, with greatest eclipse totality lasting 6 minutes, 38.86 seconds during the Total Solar Eclipse of July 22, 2009.

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> 21st-century total solar eclipse

A total solar eclipse took place on December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> 21st-century total solar eclipse

A total solar eclipse took place on June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 8, 2005</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node on April 8, 2005. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse is a hybrid event, a narrow total eclipse, and beginning and ending as an annular eclipse.

<span class="mw-page-title-main">September 1997 lunar eclipse</span> Total lunar eclipse September 16, 1997

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, September 16, 1997, the second of two lunar eclipses in 1997. A shallow total eclipse saw the Moon in relative darkness for 1 hour, 1 minute and 30.8 seconds. The Moon was 19.094% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds in total. The penumbral eclipse lasted for 5 hours, 8 minutes and 20.1 seconds. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds. The total eclipse lasted for 1 hour, 1 minute and 30.8 seconds. Maximum eclipse was at 18:46:39.1 UTC. The moon's apparent diameter was extremely large because occurred only 3 hours and 21 minutes past perigee. The Moon was only 356,986 km of the Earth at greatest eclipse.

<span class="mw-page-title-main">Solar eclipse of August 1, 2008</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's descending node of the orbit on August 1, 2008. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It had a magnitude of 1.0394 that was visible from a narrow corridor through northern Canada (Nunavut), Greenland, central Russia, eastern Kazakhstan, western Mongolia and China. Visible north of the Arctic Circle, it belonged to the so-called midnight sun eclipses. The largest city in its path was Novosibirsk in Russia. The eclipse happened only 2+12 days after the perigee that occurred on July 29, 2008, and the Moon's apparent diameter was larger than average.

<span class="mw-page-title-main">Solar eclipse of November 13, 2012</span> 21st-century total solar eclipse

A total solar eclipse took place on 13–14 November 2012 (UTC). Because it crossed the International Date Line it began in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. Its greatest magnitude was 1.0500, occurring only 12 hours before perigee, with greatest eclipse totality lasting just over four minutes. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> 21st-century total solar eclipse

A total solar eclipse occurred at the ascending node of the Moon's orbit on Tuesday, July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 33 seconds visible from the Pacific Ocean. The Moon was only 2.4 days before perigee, making it fairly large.

<span class="mw-page-title-main">Solar eclipse of May 10, 2013</span> 21st-century annular solar eclipse

An annular solar eclipse took place at the Moon's descending node of the orbit on May 9–10 (UTC), 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 14, 2001</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on December 14, 2001. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. It was visible across the Pacific Ocean, southern Costa Rica, northern Nicaragua and San Andrés Island, Colombia. The central shadow passed just south of Hawaii in early morning and ended over Central America near sunset.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node on 3 November 2013. It was a hybrid eclipse of the Sun with a magnitude of 1.0159, with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse, and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

<span class="mw-page-title-main">Solar eclipse of July 22, 1990</span> 20th-century total solar eclipse

A total solar eclipse occurred on Sunday, July 22, 1990. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southern Finland, the Soviet Union, and eastern Andreanof Islands and Amukta of Alaska.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> 20th-century total solar eclipse

A total solar eclipse occurred on September 9, 1904. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

<span class="mw-page-title-main">Solar eclipse of July 31, 1981</span> 20th-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node of the orbit on July 31, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The continental path of totality fell entirely within the Soviet Union, belonging to Georgia, Kazakhstan and Russia today. The southern part of Mount Elbrus, the highest mountain in Europe, also lies in the path of totality. Occurring only 3.8 days after perigee, the Moon's apparent diameter was larger. With a path width of 107.8 km, this total solar eclipse had an average path.

<span class="mw-page-title-main">Solar eclipse of April 20, 2023</span> Solar eclipse

A hybrid solar eclipse occurred on Thursday, April 20, 2023. A solar eclipse occurs when the Moon passes between Earth and the Sun thereby totally or partly obscuring the Sun for a viewer on Earth. A hybrid solar eclipse is a rare type of solar eclipse that changes its appearance from annular to total and back as the Moon's shadow moves across the Earth's surface. Totality occurs in a narrow path across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. Hybrid solar eclipses are extremely rare, occurring in only 3.1% of solar eclipses in the 21st century.

<span class="mw-page-title-main">Solar eclipse of April 28, 1911</span> 20th-century total solar eclipse

A total solar eclipse occurred on 28 April 1911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from southeastern tip of Australia, Tonga, American Samoa and Cook Islands. Places west of International Date Line witnessed the eclipse on Saturday 29 April 1911.

<span class="mw-page-title-main">Solar eclipse of March 6, 1905</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on March 6, 1905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Heard Island and McDonald Islands, Australia, New Caledonia, and New Hebrides.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> 20th-century total solar eclipse

A total solar eclipse occurred on January 3, 1908. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Ebon Atoll in German New Guinea, British Western Pacific Territories, Line Islands, Phoenix Islands on January 4 (Saturday), and Costa Rica on January 3 (Friday). The green line means eclipse begins or ends at sunrise or sunset. The magenta line means mid eclipse at sunrise or sunset, or northern or southern penumbra limits. The green point means eclipse obscuration of 50%. The blue line means umbral northern and southern limits.

<span class="mw-page-title-main">Solar eclipse of February 14, 1915</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on February 14, 1915. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, Papua in Dutch East Indies, German New Guinea, and the South Seas Mandate of Japan.

References

  1. "Ultimo eclipse total de sol del siglo". La Prensa. Panama City, Panama, Panama. 1994-11-03. p. 27. Retrieved 2023-10-18 via Newspapers.com.
  2. "Two Sunrises: Dawn Breaks Twice In South America In Rare Solar Eclipse". The Tyler Courier-Times. Tyler, Texas. 1994-11-03. p. 18. Retrieved 2023-10-18 via Newspapers.com.
  3. "Rare Solar Eclipse Amazes People In South America". Hickory Daily Record. Hickory, North Carolina. 1994-11-03. p. 35. Retrieved 2023-10-18 via Newspapers.com.
  4. "Sun rises twice in rare solar eclipse". The Times. Streator, Illinois. 1994-11-03. p. 9. Retrieved 2023-10-18 via Newspapers.com.
  5. "S. America captivated by rare eclipse of the sun". Fort Worth Star-Telegram. Fort Worth, Texas. 1994-11-03. p. 27. Retrieved 2023-10-18 via Newspapers.com.
  6. "Rare solar eclipse yields two sunrises". The Galion Inquirer. Galion, Ohio. 1994-11-03. p. 3. Retrieved 2023-10-18 via Newspapers.com.
  7. "Eclipse de sol oscurecerá hoy a cinco países sudamericanos". La Prensa. Panama City, Panama, Panama. 1994-11-03. p. 43. Retrieved 2023-10-18 via Newspapers.com.
  8. "Brazilian sky watchers wait for eclipse". The Pantagraph. Bloomington, Illinois. 1994-11-03. p. 5. Retrieved 2023-10-18 via Newspapers.com.
  9. "Eclipse shrouds South America". The Daily Herald-Tribune. Grande Prairie, Alberta, Canada. 1994-11-03. p. 9. Retrieved 2023-10-18 via Newspapers.com.
  10. "A day with 2 sunrises". The South Bend Tribune. South Bend, Indiana. 1994-11-03. p. 6. Retrieved 2023-10-18 via Newspapers.com.
  11. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  12. http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros133.html

Photos: