Solar eclipse of September 20, 1960

Last updated
Solar eclipse of September 20, 1960
SE1960Sep20P.png
Map
Type of eclipse
NaturePartial
Gamma 1.2057
Magnitude 0.6139
Maximum eclipse
Coordinates 72°06′N74°06′W / 72.1°N 74.1°W / 72.1; -74.1
Times (UTC)
Greatest eclipse22:59:56
References
Saros 153 (6 of 70)
Catalog # (SE5000) 9421

A partial solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, September 20 and Wednesday, September 21, 1960, [1] with a magnitude of 0.6139. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of the eastern Soviet Union on September 21 and Alaska, Canada, the United States, and northern Mexico on September 20.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

September 20, 1960 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1960 September 20 at 21:09:33.3 UTC
Equatorial Conjunction1960 September 20 at 22:16:00.6 UTC
Greatest Eclipse1960 September 20 at 22:59:55.7 UTC
Ecliptic Conjunction1960 September 20 at 23:13:03.1 UTC
Last Penumbral External Contact1960 September 21 at 00:50:33.6 UTC
September 20, 1960 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.61389
Eclipse Obscuration0.51513
Gamma1.20565
Sun Right Ascension11h52m31.1s
Sun Declination+00°48'39.5"
Sun Semi-Diameter15'55.9"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension11h53m54.7s
Moon Declination+01°53'18.2"
Moon Semi-Diameter15'23.6"
Moon Equatorial Horizontal Parallax0°56'29.8"
ΔT33.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September 1960
September 5
Descending node (full moon)
September 20
Ascending node (new moon)
Lunar eclipse chart close-1960Sep05.png SE1960Sep20P.png
Total lunar eclipse
Lunar Saros 127
Partial solar eclipse
Solar Saros 153

Eclipses in 1960

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 153

Inex

Triad

Solar eclipses of 1957–1960

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

Solar eclipse series sets from 1957 to 1960
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 30, 1957
SE1957Apr30A.png
Annular (non-central)
0.9992123 October 23, 1957
SE1957Oct23T.png
Total (non-central)
1.0022
128 April 19, 1958
SE1958Apr19A.png
Annular
0.275133 October 12, 1958
SE1958Oct12T.png
Total
−0.2951
138 April 8, 1959
SE1959Apr08A.png
Annular
−0.4546143 October 2, 1959
SE1959Oct02T.png
Total
0.4207
148 March 27, 1960
SE1960Mar27P.png
Partial
−1.1537153 September 20, 1960
SE1960Sep20P.png
Partial
1.2057

Saros 153

This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 1–19 occur between 1870 and 2200:
123
SE1870Jul28Pb.gif
July 28, 1870
SE1888Aug07P.gif
August 7, 1888
SE1906Aug20P.png
August 20, 1906
456
SE1924Aug30P.png
August 30, 1924
SE1942Sep10P.png
September 10, 1942
SE1960Sep20P.png
September 20, 1960
789
SE1978Oct02P.png
October 2, 1978
SE1996Oct12P.png
October 12, 1996
SE2014Oct23P.png
October 23, 2014
101112
SE2032Nov03P.png
November 3, 2032
SE2050Nov14P.png
November 14, 2050
SE2068Nov24P.png
November 24, 2068
131415
SE2086Dec06P.png
December 6, 2086
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
161718
Saros153 16van70 SE2141Jan08A.jpg
January 8, 2141
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
19
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3September 20–21July 9–10April 26–28February 13–14
111113115117119
SE1880Dec02P.gif
December 2, 1880
SE1888Jul09P.gif
July 9, 1888
SE1892Apr26T.gif
April 26, 1892
SE1896Feb13A.png
February 13, 1896
121123125127129
SE1899Dec03A.gif
December 3, 1899
SE1903Sep21T.png
September 21, 1903
SE1907Jul10A.png
July 10, 1907
SE1911Apr28T.png
April 28, 1911
SE1915Feb14A.png
February 14, 1915
131133135137139
SE1918Dec03A.png
December 3, 1918
SE1922Sep21T.png
September 21, 1922
SE1926Jul09A.png
July 9, 1926
SE1930Apr28H.png
April 28, 1930
SE1934Feb14T.png
February 14, 1934
141143145147149
SE1937Dec02A.png
December 2, 1937
SE1941Sep21T.png
September 21, 1941
SE1945Jul09T.png
July 9, 1945
SE1949Apr28P.png
April 28, 1949
SE1953Feb14P.png
February 14, 1953
151153155
SE1956Dec02P.png
December 2, 1956
SE1960Sep20P.png
September 20, 1960
SE1964Jul09P.png
July 9, 1964

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1982
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1818Oct29T.gif
October 29, 1818
(Saros 140)
SE1829Sep28A.gif
September 28, 1829
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1851Jul28T.png
July 28, 1851
(Saros 143)
SE1862Jun27P.gif
June 27, 1862
(Saros 144)
SE1873May26P.gif
May 26, 1873
(Saros 145)
SE1884Apr25P.gif
April 25, 1884
(Saros 146)
SE1895Mar26P.gif
March 26, 1895
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1917Jan23P.png
January 23, 1917
(Saros 149)
SE1927Dec24P.png
December 24, 1927
(Saros 150)
SE1938Nov21P.png
November 21, 1938
(Saros 151)
SE1949Oct21P.png
October 21, 1949
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1815Dec30P.gif
December 30, 1815
(Saros 148)
SE1844Dec09P.gif
December 9, 1844
(Saros 149)
SE1873Nov20P.png
November 20, 1873
(Saros 150)
SE1902Oct31P.png
October 31, 1902
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1989Aug31P.png
August 31, 1989
(Saros 154)
SE2018Aug11P.png
August 11, 2018
(Saros 155)
SE2047Jul22P.png
July 22, 2047
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
(Saros 159)
Saros161 02van72 SE2192Apr12P.jpg
April 12, 2192
(Saros 161)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 11, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, April 10 and Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 2032</span> Future solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 2, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, October 2, 1978, with a magnitude of 0.6905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 1975</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975, with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 14, 2050</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 30, 1924</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 30, 1924, with a magnitude of 0.4245. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "September 20–21, 1960 Partial Solar Eclipse". timeanddate. Retrieved 6 August 2024.
  2. "Partial Solar Eclipse of 1960 Sep 20". EclipseWise.com. Retrieved 6 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 153". eclipse.gsfc.nasa.gov.