Solar eclipse of April 30, 2060 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.2422 |
Magnitude | 1.066 |
Maximum eclipse | |
Duration | 315 s (5 min 15 s) |
Coordinates | 28°00′N20°54′E / 28°N 20.9°E |
Max. width of band | 222 km (138 mi) |
Times (UTC) | |
Greatest eclipse | 10:10:00 |
References | |
Saros | 139 (32 of 71) |
Catalog # (SE5000) | 9642 |
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, [1] with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee (on April 29, 2060, at 15:50 UTC), the Moon's apparent diameter will be larger. [2]
The path of totality will be visible from parts of Côte d'Ivoire, Ghana, Togo, Benin, eastern Burkina Faso, northwestern Nigeria, Niger, northwestern Chad, Libya, northwestern Egypt, Cyprus, Turkey, northwestern Syria, Armenia, Azerbaijan, northwestern Iran, Turkmenistan, Uzbekistan, southern Kazakhstan, Kyrgyzstan, and China. A partial solar eclipse will also be visible for much of eastern Brazil, Africa, Europe, and Asia.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2060 April 30 at 07:33:37.4 UTC |
First Umbral External Contact | 2060 April 30 at 08:28:28.1 UTC |
First Central Line | 2060 April 30 at 08:29:48.2 UTC |
First Umbral Internal Contact | 2060 April 30 at 08:31:08.2 UTC |
First Penumbral Internal Contact | 2060 April 30 at 09:28:50.5 UTC |
Greatest Eclipse | 2060 April 30 at 10:09:59.8 UTC |
Ecliptic Conjunction | 2060 April 30 at 10:12:28.4 UTC |
Greatest Duration | 2060 April 30 at 10:14:55.2 UTC |
Equatorial Conjunction | 2060 April 30 at 10:21:02.0 UTC |
Last Penumbral Internal Contact | 2060 April 30 at 10:50:53.8 UTC |
Last Umbral Internal Contact | 2060 April 30 at 11:48:45.5 UTC |
Last Central Line | 2060 April 30 at 11:50:04.8 UTC |
Last Umbral External Contact | 2060 April 30 at 11:51:24.0 UTC |
Last Penumbral External Contact | 2060 April 30 at 12:46:19.7 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.06600 |
Eclipse Obscuration | 1.13636 |
Gamma | 0.24217 |
Sun Right Ascension | 02h33m38.4s |
Sun Declination | +15°04'16.7" |
Sun Semi-Diameter | 15'52.6" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 02h33m13.6s |
Moon Declination | +15°17'46.8" |
Moon Semi-Diameter | 16'38.8" |
Moon Equatorial Horizontal Parallax | 1°01'05.8" |
ΔT | 90.6 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
April 15 Descending node (full moon) | April 30 Ascending node (new moon) |
---|---|
Penumbral lunar eclipse Lunar Saros 113 | Total solar eclipse Solar Saros 139 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.
Solar eclipse series sets from 2058 to 2061 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 22, 2058 Partial | −1.3194 | 124 | November 16, 2058 Partial | 1.1224 | |
129 | May 11, 2059 Total | −0.508 | 134 | November 5, 2059 Annular | 0.4454 | |
139 | April 30, 2060 Total | 0.2422 | 144 | October 24, 2060 Annular | −0.2625 | |
149 | April 20, 2061 Total | 0.9578 | 154 | October 13, 2061 Annular | −0.9639 |
This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000. [5] All eclipses in this series occur at the Moon’s ascending node of orbit. [6]
Series members 18–39 occur between 1801 and 2200: | ||
---|---|---|
18 | 19 | 20 |
November 29, 1807 | December 9, 1825 | December 21, 1843 |
21 | 22 | 23 |
December 31, 1861 | January 11, 1880 | January 22, 1898 |
24 | 25 | 26 |
February 3, 1916 | February 14, 1934 | February 25, 1952 |
27 | 28 | 29 |
March 7, 1970 | March 18, 1988 | March 29, 2006 |
30 | 31 | 32 |
April 8, 2024 | April 20, 2042 | April 30, 2060 |
33 | 34 | 35 |
May 11, 2078 | May 22, 2096 | June 3, 2114 |
36 | 37 | 38 |
June 13, 2132 | June 25, 2150 | July 5, 2168 |
39 | ||
July 16, 2186 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 13, 2018 and July 12, 2094 | ||||
---|---|---|---|---|
July 12–13 | April 30–May 1 | February 16–17 | December 5–6 | September 22–23 |
117 | 119 | 121 | 123 | 125 |
July 13, 2018 | April 30, 2022 | February 17, 2026 | December 5, 2029 | September 23, 2033 |
127 | 129 | 131 | 133 | 135 |
July 13, 2037 | April 30, 2041 | February 16, 2045 | December 5, 2048 | September 22, 2052 |
137 | 139 | 141 | 143 | 145 |
July 12, 2056 | April 30, 2060 | February 17, 2064 | December 6, 2067 | September 23, 2071 |
147 | 149 | 151 | 153 | 155 |
July 13, 2075 | May 1, 2079 | February 16, 2083 | December 6, 2086 | September 23, 2090 |
157 | ||||
July 12, 2094 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 14, 1809 (Saros 116) | March 14, 1820 (Saros 117) | February 12, 1831 (Saros 118) | January 11, 1842 (Saros 119) | December 11, 1852 (Saros 120) |
November 11, 1863 (Saros 121) | October 10, 1874 (Saros 122) | September 8, 1885 (Saros 123) | August 9, 1896 (Saros 124) | July 10, 1907 (Saros 125) |
June 8, 1918 (Saros 126) | May 9, 1929 (Saros 127) | April 7, 1940 (Saros 128) | March 7, 1951 (Saros 129) | February 5, 1962 (Saros 130) |
January 4, 1973 (Saros 131) | December 4, 1983 (Saros 132) | November 3, 1994 (Saros 133) | October 3, 2005 (Saros 134) | September 1, 2016 (Saros 135) |
August 2, 2027 (Saros 136) | July 2, 2038 (Saros 137) | May 31, 2049 (Saros 138) | April 30, 2060 (Saros 139) | March 31, 2071 (Saros 140) |
February 27, 2082 (Saros 141) | January 27, 2093 (Saros 142) | December 29, 2103 (Saros 143) | November 27, 2114 (Saros 144) | October 26, 2125 (Saros 145) |
September 26, 2136 (Saros 146) | August 26, 2147 (Saros 147) | July 25, 2158 (Saros 148) | June 25, 2169 (Saros 149) | May 24, 2180 (Saros 150) |
April 23, 2191 (Saros 151) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
October 9, 1828 (Saros 131) | September 18, 1857 (Saros 132) | August 29, 1886 (Saros 133) |
August 10, 1915 (Saros 134) | July 20, 1944 (Saros 135) | June 30, 1973 (Saros 136) |
June 10, 2002 (Saros 137) | May 21, 2031 (Saros 138) | April 30, 2060 (Saros 139) |
April 10, 2089 (Saros 140) | March 22, 2118 (Saros 141) | March 2, 2147 (Saros 142) |
February 10, 2176 (Saros 143) |
A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, April 19 and Sunday, April 20, 2042, with a magnitude of 1.0614. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 21 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 11, 2078, with a magnitude of 1.0701. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 16 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 18 hours before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, July 18, 1860, with a magnitude of 1.0500. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.