Solar eclipse of October 21, 1930

Last updated
Solar eclipse of October 21, 1930
Total eclipse
SE1930Oct21T.png
Map
Gamma −0.3804
Magnitude 1.023
Maximum eclipse
Duration115 s (1 min 55 s)
Coordinates 30°30′S161°06′W / 30.5°S 161.1°W / -30.5; -161.1
Max. width of band84 km (52 mi)
Times (UTC)
Greatest eclipse21:43:53
References
Saros 142 (18 of 72)
Catalog # (SE5000) 9352

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, October 21 and Wednesday, October 22, 1930, [1] with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days after perigee (on October 19, 1930, at 7:40 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina. A partial eclipse was visible for parts of Australia, Oceania, Antarctica, and southern South America.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

October 21, 1930 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1930 October 21 at 19:04:22.4 UTC
First Umbral External Contact1930 October 21 at 20:05:03.7 UTC
First Central Line1930 October 21 at 20:05:17.8 UTC
First Umbral Internal Contact1930 October 21 at 20:05:31.9 UTC
First Penumbral Internal Contact1930 October 21 at 21:17:17.4 UTC
Greatest Eclipse1930 October 21 at 21:43:53.4 UTC
Greatest Duration1930 October 21 at 21:44:03.4 UTC
Ecliptic Conjunction1930 October 21 at 21:47:55.4 UTC
Equatorial Conjunction1930 October 21 at 22:04:15.8 UTC
Last Penumbral Internal Contact1930 October 21 at 22:10:00.4 UTC
Last Umbral Internal Contact1930 October 21 at 23:22:05.3 UTC
Last Central Line1930 October 21 at 23:22:17.0 UTC
Last Umbral External Contact1930 October 21 at 23:22:28.7 UTC
Last Penumbral External Contact1930 October 22 at 00:23:21.5 UTC
October 21, 1930 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02304
Eclipse Obscuration1.04660
Gamma−0.38038
Sun Right Ascension13h43m08.4s
Sun Declination-10°41'09.2"
Sun Semi-Diameter16'04.3"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h42m27.1s
Moon Declination-11°01'17.9"
Moon Semi-Diameter16'11.5"
Moon Equatorial Horizontal Parallax0°59'25.5"
ΔT24.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October 1930
October 7
Ascending node (full moon)
October 21
Descending node (new moon)
Lunar eclipse chart close-1930Oct07.png SE1930Oct21T.png
Partial lunar eclipse
Lunar Saros 116
Total solar eclipse
Solar Saros 142

Eclipses in 1930

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Triad

Solar eclipses of 1928–1931

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on June 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse on September 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 19, 1928
SE1928May19T.png
Total (non-central)
1.0048122 November 12, 1928
SE1928Nov12P.png
Partial
1.0861
127 May 9, 1929
SE1929May09T.png
Total
−0.2887132 November 1, 1929
SE1929Nov01A.png
Annular
0.3514
137 April 28, 1930
SE1930Apr28H.png
Hybrid
0.473142 October 21, 1930
SE1930Oct21T.png
Total
−0.3804
147 April 18, 1931
SE1931Apr18P.png
Partial
1.2643152 October 11, 1931
SE1931Oct11P.png
Partial
−1.0607

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 11–32 occur between 1801 and 2200:
111213
SE1804Aug05T.png
August 5, 1804
SE1822Aug16T.png
August 16, 1822
SE1840Aug27T.png
August 27, 1840
141516
SE1858Sep07T.png
September 7, 1858
SE1876Sep17T.png
September 17, 1876
SE1894Sep29T.png
September 29, 1894
171819
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
202122
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
232425
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
262728
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
293031
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32
SE2183Mar23T.png
March 23, 2183

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17January 1–3October 20–22August 9–10May 27–29
108110112114116
SE1866Mar16P.gif
March 16, 1866
SE1877Aug09P.gif
August 9, 1877
SE1881May27P.gif
May 27, 1881
118120122124126
SE1885Mar16A.gif
March 16, 1885
SE1889Jan01T.png
January 1, 1889
SE1892Oct20P.gif
October 20, 1892
SE1896Aug09T.png
August 9, 1896
SE1900May28T.png
May 28, 1900
128130132134136
SE1904Mar17A.png
March 17, 1904
SE1908Jan03T.png
January 3, 1908
SE1911Oct22A.png
October 22, 1911
SE1915Aug10A.png
August 10, 1915
SE1919May29T.png
May 29, 1919
138140142144146
SE1923Mar17A.png
March 17, 1923
SE1927Jan03A.png
January 3, 1927
SE1930Oct21T.png
October 21, 1930
SE1934Aug10A.png
August 10, 1934
SE1938May29T.png
May 29, 1938
148150152154
SE1942Mar16P.png
March 16, 1942
SE1946Jan03P.png
January 3, 1946
SE1949Oct21P.png
October 21, 1949
SE1953Aug09P.png
August 9, 1953

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105
SE1810Sep28A.gif
September 28, 1810
(Saros 131)
SE1821Aug27A.gif
August 27, 1821
(Saros 132)
SE1832Jul27T.gif
July 27, 1832
(Saros 133)
SE1843Jun27H.gif
June 27, 1843
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1876Mar25A.gif
March 25, 1876
(Saros 137)
SE1887Feb22A.png
February 22, 1887
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1908Dec23H.png
December 23, 1908
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1930Oct21T.png
October 21, 1930
(Saros 142)
SE1941Sep21T.png
September 21, 1941
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1963Jul20T.png
July 20, 1963
(Saros 145)
SE1974Jun20T.png
June 20, 1974
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE1996Apr17P.png
April 17, 1996
(Saros 148)
SE2007Mar19P.png
March 19, 2007
(Saros 149)
SE2018Feb15P.png
February 15, 2018
(Saros 150)
SE2029Jan14P.png
January 14, 2029
(Saros 151)
SE2039Dec15T.png
December 15, 2039
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2061Oct13A.png
October 13, 2061
(Saros 154)
SE2072Sep12T.png
September 12, 2072
(Saros 155)
SE2083Aug13P.png
August 13, 2083
(Saros 156)
SE2094Jul12P.png
July 12, 2094
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1815Jan10A.png
January 10, 1815
(Saros 138)
SE1843Dec21T.png
December 21, 1843
(Saros 139)
SE1872Nov30H.png
November 30, 1872
(Saros 140)
SE1901Nov11A.png
November 11, 1901
(Saros 141)
SE1930Oct21T.png
October 21, 1930
(Saros 142)
SE1959Oct02T.png
October 2, 1959
(Saros 143)
SE1988Sep11A.png
September 11, 1988
(Saros 144)
SE2017Aug21T.png
August 21, 2017
(Saros 145)
SE2046Aug02T.png
August 2, 2046
(Saros 146)
SE2075Jul13A.png
July 13, 2075
(Saros 147)
SE2104Jun22T.png
June 22, 2104
(Saros 148)
SE2133Jun03T.png
June 3, 2133
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
SE2191Apr23A.png
April 23, 2191
(Saros 151)

Notes

  1. "October 21–22, 1930 Total Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. "Total Solar Eclipse of 1930 Oct 21". EclipseWise.com. Retrieved 3 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

References