Solar eclipse of November 23, 1965

Last updated
Solar eclipse of November 23, 1965
SE1965Nov23A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.3906
Magnitude 0.9656
Maximum eclipse
Duration242 sec (4 m 2 s)
Coordinates 1°42′N119°48′E / 1.7°N 119.8°E / 1.7; 119.8
Max. width of band134 km (83 mi)
Times (UTC)
Greatest eclipse4:14:51
References
Saros 132 (43 of 71)
Catalog # (SE5000) 9433

An annular solar eclipse occurred on November 23, 1965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Soviet Union (today's eastern Turkmenistan, southern Uzbekistan and southwestern Tajikistan), Afghanistan, Pakistan, India, China, Nepal (including the capital city Kathmandu), southwestern Sikkim (now merged with India), Burma, southwestern tip of Sainyabuli Province in Laos, Cambodia, South Vietnam (now belonging to Vietnam), Spratly Islands, Brunei, Malaysia, Indonesia, the Territory of Papua New Guinea (today's Papua New Guinea), and Gilbert and Ellice Islands (the part now belonging to Kiribati). 8 of the 14 eight-thousandersDhaulagiri, Annapurna, Manaslu, Shishapangma, Cho Oyu, Everest, Lhotse and Makalu, as well as the highest peak of Oceania, Puncak Jaya, lie in the path of annularity.

Contents

Solar eclipses of 1964–1967

This eclipse is a member of a 1964–1967 series at alternating nodes every 6 synodic months.

Note: Partial solar eclipses on January 14, 1964 and July 9, 1964 belong to the previous lunar year set.

Solar eclipse series sets from 1964–1967
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 SE1964Jun10P.png
1964 June 10
Partial
-1.13926122 SE1964Dec04P.png
1964 December 4
Partial
1.11929
127 SE1965May30T.png
1965 May 30
Total
-0.42251132 SE1965Nov23A.png
1965 November 23
Annular
0.39061
137 SE1966May20A.png
1966 May 20
Annular
0.34672142 SE1966Nov12T.png
1966 November 12
Total
-0.33001
147 SE1967May09P.png
1967 May 9
Partial
1.14218152 SE1967Nov02T.png
1967 November 2
Total (non-central)
-1.00067

Saros 132

This eclipse is a part of Saros cycle 132, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146, hybrid on March 23, 2164 and April 3, 2183 and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. The longest duration of annular was 6 minutes, 56 seconds on May 9, 1641, and totality will be 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occurs at the Moon’s descending node.

Series members 28–50 occur between 1690 and 2100:
282930
SE1695Jun11A.png
June 11, 1695
SE1713Jun22A.png
June 22, 1713
SE1731Jul04A.png
July 4, 1731
313233
SE1749Jul14A.png
July 14, 1749
SE1767Jul25A.png
July 25, 1767
SE1785Aug05A.png
August 5, 1785
343536
SE1803Aug17A.png
August 17, 1803
SE1821Aug27A.png
August 27, 1821
SE1839Sep07A.png
September 7, 1839
373839
SE1857Sep18A.png
September 18, 1857
SE1875Sep29A.png
September 29, 1875
SE1893Oct09A.png
October 9, 1893
404142
SE1911Oct22A.png
October 22, 1911
SE1929Nov01A.png
November 1, 1929
SE1947Nov12A.png
November 12, 1947
434445
SE1965Nov23A.png
November 23, 1965
SE1983Dec04A.png
December 4, 1983
SE2001Dec14A.png
December 14, 2001
464748
SE2019Dec26A.png
December 26, 2019
SE2038Jan05A.png
January 5, 2038
SE2056Jan16A.png
January 16, 2056
4950
SE2074Jan27A.png
January 27, 2074
SE2092Feb07A.png
February 7, 2092

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011.
September 11-12June 30-July 1April 17-19February 4-5November 22-23
114116118120122
SE1931Sep12P.png
September 12, 1931
SE1935Jun30P.png
June 30, 1935
SE1939Apr19A.png
April 19, 1939
SE1943Feb04T.png
February 4, 1943
SE1946Nov23P.png
November 23, 1946
124126128130132
SE1950Sep12T.png
September 12, 1950
SE1954Jun30T.png
June 30, 1954
SE1958Apr19A.png
April 19, 1958
SE1962Feb05T.png
February 5, 1962
SE1965Nov23A.png
November 23, 1965
134136138140142
SE1969Sep11A.png
September 11, 1969
SE1973Jun30T.png
June 30, 1973
SE1977Apr18A.png
April 18, 1977
SE1981Feb04A.png
February 4, 1981
SE1984Nov22T.png
November 22, 1984
144146148150152
SE1988Sep11A.png
September 11, 1988
SE1992Jun30T.png
June 30, 1992
SE1996Apr17P.png
April 17, 1996
SE2000Feb05P.png
February 5, 2000
SE2003Nov23T.png
November 23, 2003
154156158160162
SE2007Sep11P.png
September 11, 2007
SE2011Jul01P.png
July 1, 2011
April 18, 2015February 4, 2019November 23, 2022

Notes

    Related Research Articles

    Solar eclipse of May 10, 2013 21st-century annular solar eclipse

    An annular solar eclipse took place at the Moon's descending node of the orbit on May 9–10 (UTC), 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

    Solar eclipse of May 11, 2078 Future total solar eclipse

    A total solar eclipse will occur on Wednesday, May 11, 2078. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

    Solar eclipse of September 9, 1904 20th-century total solar eclipse

    A total solar eclipse occurred on September 9, 1904. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

    Solar eclipse of June 30, 1992 20th-century total solar eclipse

    A total solar eclipse occurred on June 30, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southeastern Uruguay and southern tip of Rio Grande do Sul, Brazil.

    Solar eclipse of April 20, 2023 Solar eclipse

    A total solar eclipse will occur on Thursday, April 20, 2023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

    Solar eclipse of June 19, 1936 20th-century total solar eclipse

    A total solar eclipse occurred at the Moon's descending node on June 19, 1936. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed Europe and Asia. The full phase could be seen in Greece, Turkey, USSR, China and the Japanese island of Hokkaido. The maximum eclipse was near Bratsk and lasted about 2.5 minutes. The sun was 57 degrees above horizon, gamma had a value of 0.539, and the eclipse was part of Solar Saros 126.

    Solar eclipse of February 5, 2046 Future annular solar eclipse

    An annular solar eclipse will occur on Monday, February 5, 2046. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

    Solar eclipse of May 30, 1965 20th-century total solar eclipse

    A total solar eclipse occurred on May 30, 1965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from northwestern Northland Region in New Zealand on May 31st (Monday), and Manuae in Cook Islands, Manuae and Motu One in French Polynesia, and Peru on May 30th (Sunday).

    Solar eclipse of April 8, 1959 20th-century annular solar eclipse

    An annular solar eclipse occurred on April 8, 1959. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, southeastern tip of Milne Bay Province in the Territory of Papua New Guinea, British Solomon Islands, Gilbert and Ellice Islands, Tokelau, and Swains Island in American Samoa.

    Solar eclipse of May 18, 1901 20th-century total solar eclipse

    A total solar eclipse occurred on May 18, 1901. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed French Madagascar, Réunion, British Mauritius, Dutch East Indies, and British New Guinea.

    Solar eclipse of January 14, 1926 20th-century total solar eclipse

    A total solar eclipse occurred on January 14, 1926. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from French Equatorial Africa, northeastern Belgian Congo, southwestern tip of Anglo-Egyptian Sudan, British Uganda, British Kenya, southern tip of Italian Somaliland, British Seychelles, Dutch East Indies, North Borneo, and Philippines.

    Solar eclipse of September 4, 2100 Future total solar eclipse

    A total solar eclipse is forecast to occur on September 4, 2100. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

    Solar eclipse of October 4, 2070 Future annular solar eclipse

    An annular solar eclipse will occur on October 4, 2070. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

    Solar eclipse of November 11, 1901 20th-century annular solar eclipse

    An annular solar eclipse occurred on November 11, 1901. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Italian island Sicily, the whole British Malta, Ottoman Tripolitania, Egypt, Ottoman Empire, Emirate of Jabal Shammar, Aden Protectorate, Muscat and Oman, British Raj, British Ceylon, Siam, French Indochina, Bombay Reef in the Paracel Islands, and Philippines.

    Solar eclipse of September 21, 1903 20th-century total solar eclipse

    A total solar eclipse occurred on September 21, 1903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

    Solar eclipse of December 13, 1936 20th-century annular solar eclipse

    An annular solar eclipse occurred on December 13–14, 1936. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, New Zealand on December 14th (Monday), and Oeno Island in Pitcairn Islands on December 13th (Sunday).

    Solar eclipse of May 9, 1948 20th-century annular solar eclipse

    An annular solar eclipse occurred on May 9, 1948. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Car Nicobar, the northernmost of the Nicobar Islands, and Burma, Thailand including Bangkok, French Indochina, North Vietnam, China, South Korea, Rebun Island in Japan, Kuril Islands in the Soviet Union on May 9th, and Alaska on May 8th. It was the first central solar eclipse visible from Bangkok from 1948 to 1958, where it is rare for a large city to witness 4 central solar eclipses in just 9.945 years. The moon's apparent diameter was only 0.006% smaller than the Sun's, so this was an annular solar eclipse that occurred on May 9, 1948. Occurring 7.1 days after apogee and 6.6 days before perigee, the Moon's apparent diameter was near the average diameter.

    Solar eclipse of January 3, 1927 20th-century annular solar eclipse

    An annular solar eclipse occurred on January 3, 1927. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from New Zealand on January 4th (Tuesday), and Chile, Argentina, Uruguay and southern Brazil on January 3rd (Monday).

    Solar eclipse of July 20, 1925 20th-century annular solar eclipse

    An annular solar eclipse occurred on July 20, 1925. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from northern part of Northland Region and the whole Kermadec Islands in New Zealand on July 21st (Tuesday), and Rapa Iti in French Polynesia on July 20th (Monday).

    Solar eclipse of July 9, 1926 20th-century annular solar eclipse

    An annular solar eclipse occurred on July 9, 1926. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in South Pacific Mandate in Japan and Wake Island on July 10th (Saturday), and Midway Atoll on July 9th (Friday).

    References