Solar eclipse of March 9, 2054

Last updated
Solar eclipse of March 9, 2054
SE2054Mar09P.png
Map
Type of eclipse
NaturePartial
Gamma −1.1711
Magnitude 0.6678
Maximum eclipse
Coordinates 72°00′S97°54′E / 72°S 97.9°E / -72; 97.9
Times (UTC)
Greatest eclipse12:33:40
References
Saros 150 (19 of 71)
Catalog # (SE5000) 9627

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, [1] with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of Antarctica, South Africa, and southern Madagascar.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

March 9, 2054 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2054 March 09 at 10:32:08.8 UTC
Equatorial Conjunction2054 March 09 at 11:50:36.8 UTC
Greatest Eclipse2054 March 09 at 12:33:40.5 UTC
Ecliptic Conjunction2054 March 09 at 12:47:06.8 UTC
Last Penumbral External Contact2054 March 09 at 14:35:28.0 UTC
March 9, 2054 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.66783
Eclipse Obscuration0.56962
Gamma−1.17111
Sun Right Ascension23h20m07.5s
Sun Declination-04°17'25.4"
Sun Semi-Diameter16'06.6"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension23h21m24.6s
Moon Declination-05°18'27.6"
Moon Semi-Diameter14'55.7"
Moon Equatorial Horizontal Parallax0°54'47.2"
ΔT86.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February–March 2054
February 22
Ascending node (full moon)
March 9
Descending node (new moon)
Lunar eclipse chart close-2054Feb22.png SE2054Mar09P.png
Total lunar eclipse
Lunar Saros 124
Partial solar eclipse
Solar Saros 150

Eclipses in 2054

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 150

Inex

Triad

Solar eclipses of 2051–2054

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on August 3, 2054 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2051 to 2054
Descending node Ascending node
SarosMapGammaSarosMapGamma
120 April 11, 2051
SE2051Apr11P.png
Partial
1.0169125 October 4, 2051
SE2051Oct04P.png
Partial
−1.2094
130 March 30, 2052
SE2052Mar30T.png
Total
0.3238135 September 22, 2052
SE2052Sep22A.png
Annular
−0.448
140 March 20, 2053
SE2053Mar20A.png
Annular
−0.4089145 September 12, 2053
SE2053Sep12T.png
Total
0.314
150 March 9, 2054
SE2054Mar09P.png
Partial
−1.1711155 September 2, 2054
SE2054Sep02P.png
Partial
1.0215

Saros 150

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 5–27 occur between 1801 and 2200:
567
SE1801Oct07P.png
October 7, 1801
SE1819Oct19P.gif
October 19, 1819
SE1837Oct29P.gif
October 29, 1837
8910
SE1855Nov09P.gif
November 9, 1855
SE1873Nov20P.gif
November 20, 1873
SE1891Dec01P.gif
December 1, 1891
111213
SE1909Dec12P.png
December 12, 1909
SE1927Dec24P.png
December 24, 1927
SE1946Jan03P.png
January 3, 1946
141516
SE1964Jan14P.png
January 14, 1964
SE1982Jan25P.png
January 25, 1982
SE2000Feb05P.png
February 5, 2000
171819
SE2018Feb15P.png
February 15, 2018
SE2036Feb27P.png
February 27, 2036
SE2054Mar09P.png
March 9, 2054
202122
SE2072Mar19P.png
March 19, 2072
SE2090Mar31P.png
March 31, 2090
SE2108Apr11P.gif
April 11, 2108
232425
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
2627
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21March 9December 25–26October 13–14August 1–2
118120122124126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128130132134136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138140142144146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148150152154156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158
SE2069May20P.png
May 20, 2069

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1814Jan21A.gif
January 21, 1814
(Saros 128)
SE1824Dec20Am.gif
December 20, 1824
(Saros 129)
SE1835Nov20T.png
November 20, 1835
(Saros 130)
SE1846Oct20A.png
October 20, 1846
(Saros 131)
SE1857Sep18A.png
September 18, 1857
(Saros 132)
SE1868Aug18T.png
August 18, 1868
(Saros 133)
SE1879Jul19A.png
July 19, 1879
(Saros 134)
SE1890Jun17A.png
June 17, 1890
(Saros 135)
SE1901May18T.png
May 18, 1901
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1934Feb14T.png
February 14, 1934
(Saros 139)
SE1945Jan14A.png
January 14, 1945
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1966Nov12T.png
November 12, 1966
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE1988Sep11A.png
September 11, 1988
(Saros 144)
SE1999Aug11T.png
August 11, 1999
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2021Jun10A.png
June 10, 2021
(Saros 147)
SE2032May09A.png
May 9, 2032
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2054Mar09P.png
March 9, 2054
(Saros 150)
SE2065Feb05P.png
February 5, 2065
(Saros 151)
SE2076Jan06T.png
January 6, 2076
(Saros 152)
SE2086Dec06P.png
December 6, 2086
(Saros 153)
SE2097Nov04A.png
November 4, 2097
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 07van69 SE2119Sep05P.jpg
September 5, 2119
(Saros 156)
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
(Saros 157)
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
(Saros 158)
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
(Saros 159)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1822Aug16T.gif
August 16, 1822
(Saros 142)
SE1851Jul28T.png
July 28, 1851
(Saros 143)
SE1880Jul07A.gif
July 7, 1880
(Saros 144)
SE1909Jun17H.png
June 17, 1909
(Saros 145)
SE1938May29T.png
May 29, 1938
(Saros 146)
SE1967May09P.png
May 9, 1967
(Saros 147)
SE1996Apr17P.png
April 17, 1996
(Saros 148)
SE2025Mar29P.png
March 29, 2025
(Saros 149)
SE2054Mar09P.png
March 9, 2054
(Saros 150)
SE2083Feb16P.png
February 16, 2083
(Saros 151)
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
(Saros 152)
SE2141Jan08A.png
January 8, 2141
(Saros 153)
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
(Saros 154)
SE2198Nov28T.png
November 28, 2198
(Saros 155)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 11, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, April 10 and Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 21, 2025</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon’s descending node of orbit on Sunday, September 21, 2025, with a magnitude of 0.855. A solar eclipse occurs when the Moon passes between the Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, July 22 and Tuesday, July 23, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 23, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047, with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 27, 2055</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 27, 2055, with a magnitude of 0.6932. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, January 16 and Monday, January 17, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.25 days after perigee and 7.2 days before apogee.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 15, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, July 15, 2083, with a magnitude of 0.0168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This will be the 72nd and final event from Solar Saros 118.

References

  1. "March 9, 2054 Partial Solar Eclipse". timeanddate. Retrieved 15 August 2024.
  2. "Partial Solar Eclipse of 2054 Mar 09". EclipseWise.com. Retrieved 15 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.