Solar eclipse of August 12, 2026

Last updated
Solar eclipse of August 12, 2026
SE2026Aug12T.png
Map
Type of eclipse
NatureTotal
Gamma 0.8977
Magnitude 1.0386
Maximum eclipse
Duration138 s (2 min 18 s)
Coordinates 65°12′N25°12′W / 65.2°N 25.2°W / 65.2; -25.2
Max. width of band294 km (183 mi)
Times (UTC)
Greatest eclipse17:47:06
References
Saros 126 (48 of 72)
Catalog # (SE5000) 9566

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, August 12, 2026, [1] with a magnitude of 1.0386. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days after perigee (on August 10, 2026, at 12:15 UTC), the Moon's apparent diameter will be larger. [2]

Contents

The total eclipse will pass over the Arctic, Greenland, Iceland, Atlantic Ocean, northern Spain and very extreme northeastern Portugal. [3] The points of greatest duration and greatest eclipse will be just 45 km (28 mi) off the western coast of Iceland by 65°10.3' N and 25°12.3' W, where the totality will last 2m 18.21s. A partial eclipse will cover more than 90% of the Sun in Ireland, Great Britain, Portugal, France, Italy, the Balkans and North Africa and to a lesser extent in most of Europe, West Africa and northern North America.

The total eclipse will pass over northern Spain from the Atlantic coast to the Mediterranean coast as well as the Balearic Islands. The total eclipse will be visible from the cities of A Coruña, Valencia, Zaragoza, Palma and Bilbao, but both Madrid and Barcelona will be just outside the path of totality. [4]

The last total eclipse in continental Europe occurred on March 29, 2006 [5] and in continental part of European Union it occurred on August 11, 1999. It will be the first total solar eclipse visible in Iceland since June 30, 1954, also Solar Saros series 126 (descending node), and the only one to occur in the 21st century as the next one visible over Iceland will be in 2196. The last total solar eclipse in Spain happened on August 30, 1905 and followed a similar path across the country. The next total eclipse visible in Spain will happen less than a year later on August 2, 2027. [6]

Circumstances

The eclipse path proceeds from North Siberia throughout the Arctic Region, Iceland, eastern Atlantic to Spain and the Mediterranean.

Solar eclipse and the aurora borealis

In the North Russia area where totality will begin at sunrise, the aurora borealis could also be visible up to the beginning of the nautical twilight, depending on the intensity of the auroral activity at that date. If an extremely high intensity geomagnetic storm takes place simultaneously, there might be chances of seeing the aurora simultaneously with the eclipsed Sun. In the east of Taymyr Peninsula (north-east of Krasnoyarsk Krai) the maximum of total phase will occur on August 13 at 0:00 local time during midnight sun. [7]

Solar eclipse below the horizon

Due to the considerable eclipse gamma (more than 0.8), observers where the totally eclipsed Sun is just below the horizon will have the chance to observe the lunar shadow in the high atmosphere, as well as shortened civil twilight and extended nautical twilight. The darkening of the twilight sky could improve the chances of observing the inner Zodiacal light. [8]

Bright planets and stars visible during totality

Far northern Russia will be treated to a dawn eclipse. Mercury and Jupiter will be very low above the rising eclipsed Sun, but Mercury will be showing most of its sunlit side and Jupiter will have its usual brightness. Mars and Saturn will be more advantageously placed in the northeast and southeast respectively. Of the bright asterisms, the Big Dipper will be very high in the north-northwest and the Summer Triangle will be high in the southwest. Aldebaran, Arcturus, Capella and Pollux are other first-magnitude stars which may be seen, although they will be low.

In Iceland the eclipse will be a mid-afternoon event occurring about 4 hours before sunset, it will start in Reykjavik at around 2:04 PM, with the total eclipse occurring at 3:15 PM. [9] Mars may be a challenge to find, because it will be low in the west. Mercury and Jupiter will be well positioned west of the Sun and Venus will be many degrees to its east. Of 1st-magnitude stars from west to east, Capella and Pollux will be at decent elevations west of the Sun; Regulus, Spica (due south), Arcturus, Vega and Deneb are candidates for easy sighting to the Sun's east. Procyon will be about to set, while Altair will be low on the opposite side.

In Spain the eclipse will occur about 1 hour before sunset. Mercury and Jupiter, west of the eclipsed Sun, will therefore be very low below it. Venus will be brilliant well up in the southwest, with Spica to its east. Arcturus will be high in the south, and the Summer Triangle will be well up in the east. Lower in the south, Antares will be minutes away from transit. [10]

Images

SE2026Aug12T.gif
Animated path

Details of the totality in some places or cities

Solar Eclipse of August 12, 2026
Country or TerritoryPlace or CityStart

of
partial
eclipse
(Local Time)

Start of
total
eclipse (Local Time)
End of
total
eclipse (Local Time)
Duration of
total
eclipse
End of
partial
eclipse (Local Time)
Magnitude
Flag of Russia.svg  Russia East of Taymyr Peninsula, Krasnoyarsk Krai 23:08:4323:59:2100:00:56 (August 13)1 min 35s00:51:51 (August 13)1,031
Flag of Greenland.svg  Greenland Mestersvig 16:32:4117:32:5217:34:011 min 09 s18:32:251,038
Flag of Iceland.svg  Iceland Ísafjörður 16:43:1717:44:0717:45:381 min 31 s18:43:571,038
Flag of Iceland.svg  Iceland Grundarfjörður 16:45:1417:46:0317:47:551 min 52 s18:46:031,038
Flag of Iceland.svg  Iceland Reykjavík 16:47:1117:48:1517:49:171 min 02 s18:47:381,038
Flag of Iceland.svg  Iceland Reykjanesbær 16:47:1117:48:0417:49:431 min 39 s18:47:521,038
Flag of Spain.svg  Spain Gijón 19:31:0220:26:4720:28:321 min 45 s21:20:451,034
Flag of Spain.svg  Spain Santander 19:31:1920:26:5520:27:571 min 02 s21:18:17 (Sunset)1,034
Flag of Spain.svg  Spain Oviedo 19:31:1920:27:0420:28:521 min 48 s21:21:041,034
Flag of Spain.svg  Spain Bilbao 19:31:4720:27:2220:27:5230 s21:14:15 (Sunset)1,034
Flag of Spain.svg  Spain A Coruña 19:30:5620:27:4020:28:561 min 15 s21:21:591,034
Flag of Spain.svg  Spain León 19:32:4320:28:1920:30:041 min 44 s21:22:061,034
Flag of Spain.svg  Spain Burgos 19:33:2120:28:2420:30:071 min 43 s21:15:25 (Sunset)1,033
Flag of Spain.svg  Spain Zaragoza 19:34:4020:29:0120:30:251 min 24 s21:02:52 (Sunset)1,032
Flag of Spain.svg  Spain Tarragona 19:35:3320:29:2820:30:281 min 00 s20:53:18 (Sunset)1,032
Flag of Spain.svg  Spain Valladolid 19:34:3020:29:5220:31:191 min 27 s21:18:121,033
Flag of Portugal.svg  Portugal Aveleda e Rio de Onor 18:33:4719:30:2119:30:3312 s20:23:291,034
Flag of Spain.svg  Spain Palma de Mallorca 19:38:0320:31:0420:32:401m 36 s20:44:48 (Sunset)1,031
Flag of Spain.svg  Spain Castellón de La Plana 19:37:3120:31:1920:32:521 m 34 s20:56:20 (Sunset)1,032
Flag of Spain.svg  Spain Alcobendas 19:36:3220:31:5720:32:2124 s21:11:42 (Sunset)1,033
Flag of Spain.svg  Spain Valencia 19:38:2320:32:2720:33:281 min 01 s20:56:31 (Sunset)1,032
Flag of Spain.svg  Spain Ibiza 19:39:1420:32:4420:33:481 min 04 s20:48:28 (Sunset)1,031

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [11]

August 12, 2026 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2026 August 12 at 15:35:23.9 UTC
First Umbral External Contact2026 August 12 at 16:59:18.1 UTC
First Central Line2026 August 12 at 17:01:16.5 UTC
First Umbral Internal Contact2026 August 12 at 17:03:19.0 UTC
Equatorial Conjunction2026 August 12 at 17:05:01.6 UTC
Ecliptic Conjunction2026 August 12 at 17:37:53.9 UTC
Greatest Duration2026 August 12 at 17:45:53.9 UTC
Greatest Eclipse2026 August 12 at 17:47:05.8 UTC
Last Umbral Internal Contact2026 August 12 at 18:31:21.6 UTC
Last Central Line2026 August 12 at 18:33:21.7 UTC
Last Umbral External Contact2026 August 12 at 18:35:17.7 UTC
Last Penumbral External Contact2026 August 12 at 19:59:09.2 UTC
August 12, 2026 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03863
Eclipse Obscuration1.07876
Gamma0.89774
Sun Right Ascension09h29m47.3s
Sun Declination+14°48'04.5"
Sun Semi-Diameter15'47.0"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h31m17.3s
Moon Declination+15°36'58.5"
Moon Semi-Diameter16'16.9"
Moon Equatorial Horizontal Parallax0°59'45.1"
ΔT72.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August 2026
August 12
Descending node (new moon)
August 28
Ascending node (full moon)
SE2026Aug12T.png Lunar eclipse chart close-2026Aug28.png
Total solar eclipse
Solar Saros 126
Partial lunar eclipse
Lunar Saros 138

Eclipses in 2026

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 126

Inex

Triad

Solar eclipses of 2026–2029

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [12]

The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2026 to 2029
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 February 17, 2026
SE2026Feb17A.png
Annular
−0.97427126 August 12, 2026
SE2026Aug12T.png
Total
0.89774
131 February 6, 2027
SE2027Feb06A.png
Annular
−0.29515136 August 2, 2027
SE2027Aug02T.png
Total
0.14209
141 January 26, 2028
SE2028Jan26A.png
Annular
0.39014146 July 22, 2028
SE2028Jul22T.png
Total
−0.60557
151 January 14, 2029
SE2029Jan14P.png
Partial
1.05532156 July 11, 2029
SE2029Jul11P.png
Partial
−1.41908

Saros 126

This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810; hybrid eclipses from April 14, 1828 through May 6, 1864; and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 30 seconds on June 26, 1359, and the longest duration of totality was produced by member 45 at 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occur at the Moon’s descending node of orbit. [13]

Series members 36–57 occur between 1801 and 2200:
363738
SE1810Apr04A.gif
April 4, 1810
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
SE1846Apr25H.gif
April 25, 1846
394041
SE1864May06H.gif
May 6, 1864
SE1882May17T.png
May 17, 1882
SE1900May28T.png
May 28, 1900
424344
SE1918Jun08T.png
June 8, 1918
SE1936Jun19T.png
June 19, 1936
SE1954Jun30T.png
June 30, 1954
454647
SE1972Jul10T.png
July 10, 1972
SE1990Jul22T.png
July 22, 1990
SE2008Aug01T.png
August 1, 2008
484950
SE2026Aug12T.png
August 12, 2026
SE2044Aug23T.png
August 23, 2044
SE2062Sep03P.png
September 3, 2062
515253
SE2080Sep13P.png
September 13, 2080
SE2098Sep25P.png
September 25, 2098
Saros126 53van72 SE2116Oct06P.jpg
October 6, 2116
545556
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
Saros126 55van72 SE2152Oct28P.jpg
October 28, 2152
Saros126 56van72 SE2170Nov08P.jpg
November 8, 2170
57
Saros126 57van72 SE2188Nov18P.jpg
November 18, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1March 19–20January 5–6October 24–25August 12–13
118120122124126
SE2011Jun01P.png
June 1, 2011
SE2015Mar20T.png
March 20, 2015
SE2019Jan06P.png
January 6, 2019
SE2022Oct25P.png
October 25, 2022
SE2026Aug12T.png
August 12, 2026
128130132134136
SE2030Jun01A.png
June 1, 2030
SE2034Mar20T.png
March 20, 2034
SE2038Jan05A.png
January 5, 2038
SE2041Oct25A.png
October 25, 2041
SE2045Aug12T.png
August 12, 2045
138140142144146
SE2049May31A.png
May 31, 2049
SE2053Mar20A.png
March 20, 2053
SE2057Jan05T.png
January 5, 2057
SE2060Oct24A.png
October 24, 2060
SE2064Aug12T.png
August 12, 2064
148150152154156
SE2068May31T.png
May 31, 2068
SE2072Mar19P.png
March 19, 2072
SE2076Jan06T.png
January 6, 2076
SE2079Oct24A.png
October 24, 2079
SE2083Aug13P.png
August 13, 2083
158160162164
SE2087Jun01P.png
June 1, 2087
SE2098Oct24P.png
October 24, 2098

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Mar25P.gif
March 25, 1819
(Saros 107)
SE1830Feb23P.gif
February 23, 1830
(Saros 108)
SE1841Jan22P.gif
January 22, 1841
(Saros 109)
SE1862Nov21P.gif
November 21, 1862
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1928May19T.png
May 19, 1928
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2048Jun11A.png
June 11, 2048
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2146Sep06A.png
September 6, 2146
(Saros 137)
SE2157Aug05A.png
August 5, 2157
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1881Nov21A.gif
November 21, 1881
(Saros 121)
SE1910Nov02P.png
November 2, 1910
(Saros 122)
SE1939Oct12T.png
October 12, 1939
(Saros 123)
SE1968Sep22T.png
September 22, 1968
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2055Jul24T.png
July 24, 2055
(Saros 127)
SE2084Jul03A.png
July 3, 2084
(Saros 128)
SE2113Jun13T.png
June 13, 2113
(Saros 129)
SE2142May25T.png
May 25, 2142
(Saros 130)
SE2171May05A.png
May 5, 2171
(Saros 131)
SE2200Apr14T.png
April 14, 2200
(Saros 132)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 2, 2019, with a magnitude of 1.0459. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 30, 2033</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 11 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 23, 2044</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Monday, August 22 and Tuesday, August 23, 2044, with a magnitude of 1.0364. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 2, 2027</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 2, 2027, with a magnitude of 1.079. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 14 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 3, 1986</span> Hybrid eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Friday, October 3, 1986, with a magnitude of 1. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 8.3 days after apogee and 3.7 days before perigee.

<span class="mw-page-title-main">Solar eclipse of February 17, 2026</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after apogee and 7.5 days before perigee.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 13, 2037</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 13, 2037, with a magnitude of 1.0413. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 2041</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 30, 2041, with a magnitude of 1.0189. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.75 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 9, 2043</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Thursday, April 9 and Friday, April 10, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 22 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 3, 2073</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 3, 2073, with a magnitude of 1.0294. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

References

  1. "August 12, 2026 Total Solar Eclipse". timeanddate. Retrieved 13 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 13 August 2024.
  3. Jamie Carter (2024-08-25). "Where can I see the total solar eclipse on Aug. 12, 2026?". Space.com. Retrieved 2024-09-18.
  4. "Eclipse solar abril 2024 en directo: mapa, trayectoria en España y horarios del eclipse de sol, hoy en vivo". Diario AS (in Spanish). 2024-04-09. Retrieved 2024-09-18.
  5. see f.e. Eclipse in Astrakhan, which is located in European Russia
  6. Lagatta, Eric. "Total solar eclipses are becoming more rare. Here's why 'it's all downhill from here.'". USA TODAY. Retrieved 2024-09-18.
  7. 12–13 August, 2026. — Total Solar Eclipse — Mys Izbovoy, Russia. timeanddate.com
  8. Guliaev, R. A. (1992). "On a possible use of total solar eclipse below the horizon for observations of the inner zodiacal light (as applied to the eclipse of 30 June, 1992)". Solar Physics. 138 (1): 209–211. Bibcode:1992SoPh..138..209G. doi:10.1007/BF00146206. S2CID   122443822.
  9. Freyr, Aron (2024-09-02). "2026 Solar Eclipse in Iceland: Facts, Best Spots, Tips, etc". www.gocarrental.is. Retrieved 2024-09-18.
  10. https://skyandtelescope.org/interactive-sky-chart/ Sky & Telescope Interactive Sky Chart
  11. "Total Solar Eclipse of 2026 Aug 12". EclipseWise.com. Retrieved 13 August 2024.
  12. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  13. "NASA - Catalog of Solar Eclipses of Saros 126". eclipse.gsfc.nasa.gov.