Solar eclipse of September 10, 1923

Last updated
Solar eclipse of September 10, 1923
SE1923Sep10T.png
Map
Type of eclipse
NatureTotal
Gamma 0.5149
Magnitude 1.043
Maximum eclipse
Duration217 s (3 min 37 s)
Coordinates 34°42′N121°48′W / 34.7°N 121.8°W / 34.7; -121.8
Max. width of band167 km (104 mi)
Times (UTC)
Greatest eclipse20:47:29
References
Saros 143 (18 of 72)
Catalog # (SE5000) 9335
Photographed from Proto Libertad, Sonora, Mexico Solar eclipse, September 10th 1923 (noao-04587).jpg
Photographed from Proto Libertad, Sonora, Mexico

A total solar eclipse occurred at the Moon's ascending node of orbit between Monday, September 10, and Tuesday, September 11, 1923, [1] with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days before perigee (on September 12, 1923, at 23:20 UTC), the Moon's apparent diameter was larger. [2]

Contents

The path of totality started at the southeastern tip of Shiashkotan in Japan (now in Russia) on September 11, and crossed the Pacific Ocean, southwestern California including the whole Channel Islands, northwestern and northern Mexico, Yucatan Peninsula, British Honduras (today's Belize), Swan Islands, Honduras, and Serranilla Bank and Bajo Nuevo in Colombia on September 10. The eclipse was over 90% in Los Angeles, San Diego, and Santa Barbara on the Southern California coast. A partial eclipse was visible for parts of far east Russia, North America, Central America, the Caribbean, and northern South America.

Viewings

Howard Russell Butler painting composed in Lompoc, California Howard Russell Butler - Solar Eclipse, Lompoc 1923 - PP351 - Princeton University Art Museum.jpg
Howard Russell Butler painting composed in Lompoc, California

At Santa Catalina Island, off the coast of California, a large group of scientists gathered to observe the eclipse were foiled by clouds, with the Los Angeles Times saying that "nothing of the eclipse was seen save two glimpses that showed the crescent of the sun, a sickly, white watermelon rind with the wavering black moon and a few rags of black clouds fast blotting out the white light": [3]

All day the scientists from Yerkes Observatory of the University of Chicago, from the University of Wisconsin, from Dearborn University, from Drake University and Carleton College, had rehearsed and rehearsed to the counting of the seconds and there they stood now while the moon covered the sun and the world was dark and still, and though the counter counted there was no possibility of taking pictures; no chance of seeing anything but that gray, blue, purple shadow moving across the sky. [3]

Even as late as 11:30 when the eclipse began, the scientists had hopes. They had come thousands of miles, had worked hard, had spent much money, all for a few minutes of clear sky. They had worked in the sweltering sun for weeks and weeks 1302 feet above the sea. There had not been one moment of one day that was not flooded with sunshine. "And surely," said Prof. Edwin Frost of the University of Chicago, "surely we will have these few minutes today." [3]

In Bakersfield, where the last eclipse of the Sun had taken place 123 years earlier, many watched the eclipse from streets, chickens were confused, and "all the astronomical apparatus of Bakersfield" was trained on the eclipse. [4] In New York City the eclipse, while partial, was viewed successfully; in the area of totality, it was "studied by astronomers who [were] depending on it to help them test out Einstein's famous theory of relativity and whether light rays are bent by the attraction of gravity". [5]

A team from the University of Arizona took images of the corona in Puerto Libertad, Sonora, Mexico, on the east coast of the Gulf of California. [6] A team from Sproul Observatory observed it in Yerbanís in eastern Durango state, Mexico. [7]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [8]

September 10, 1923 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1923 September 10 at 18:14:41.7 UTC
First Umbral External Contact1923 September 10 at 19:16:26.6 UTC
First Central Line1923 September 10 at 19:17:19.8 UTC
First Umbral Internal Contact1923 September 10 at 19:18:13.2 UTC
Equatorial Conjunction1923 September 10 at 20:30:34.7 UTC
Greatest Eclipse1923 September 10 at 20:47:29.1 UTC
Greatest Duration1923 September 10 at 20:47:52.3 UTC
Ecliptic Conjunction1923 September 10 at 20:52:49.7 UTC
Last Umbral Internal Contact1923 September 10 at 22:16:55.2 UTC
Last Central Line1923 September 10 at 22:17:50.4 UTC
Last Umbral External Contact1923 September 10 at 22:18:45.5 UTC
Last Penumbral External Contact1923 September 10 at 23:20:20.4 UTC
September 10, 1923 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.04302
Eclipse Obscuration1.08790
Gamma0.51493
Sun Right Ascension11h12m32.0s
Sun Declination+05°05'47.3"
Sun Semi-Diameter15'53.2"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension11h13m08.8s
Moon Declination+05°35'11.3"
Moon Semi-Diameter16'20.1"
Moon Equatorial Horizontal Parallax0°59'57.1"
ΔT23.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August–September 1923
August 26
Descending node (full moon)
September 10
Ascending node (new moon)
Lunar eclipse chart close-1923Aug26.png SE1923Sep10T.png
Partial lunar eclipse
Lunar Saros 117
Total solar eclipse
Solar Saros 143

Eclipses in 1923

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 143

Inex

Triad

Solar eclipses of 1921–1924

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [9]

The partial solar eclipse on July 31, 1924 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1921 to 1924
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 8, 1921
SE1921Apr08A.png
Annular
0.8869123 October 1, 1921
SE1921Oct01T.png
Total
−0.9383
128 March 28, 1922
SE1922Mar28A.png
Annular
0.1711133 September 21, 1922
SE1922Sep21T.png
Total
−0.213
138 March 17, 1923
SE1923Mar17A.png
Annular
−0.5438143 September 10, 1923
SE1923Sep10T.png
Total
0.5149
148 March 5, 1924
SE1924Mar05P.png
Partial
−1.2232153 August 30, 1924
SE1924Aug30P.png
Partial
1.3123

Saros 143

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit. [10]

Series members 12–33 occur between 1801 and 2200:
121314
SE1815Jul06T.png
July 6, 1815
SE1833Jul17T.png
July 17, 1833
SE1851Jul28T.png
July 28, 1851
151617
SE1869Aug07T.png
August 7, 1869
SE1887Aug19T.png
August 19, 1887
SE1905Aug30T.png
August 30, 1905
181920
SE1923Sep10T.png
September 10, 1923
SE1941Sep21T.png
September 21, 1941
SE1959Oct02T.png
October 2, 1959
212223
SE1977Oct12T.png
October 12, 1977
SE1995Oct24T.png
October 24, 1995
SE2013Nov03H.png
November 3, 2013
242526
SE2031Nov14H.png
November 14, 2031
SE2049Nov25H.png
November 25, 2049
SE2067Dec06H.png
December 6, 2067
272829
SE2085Dec16A.png
December 16, 2085
SE2103Dec29A.png
December 29, 2103
SE2122Jan08A.png
January 8, 2122
303132
SE2140Jan20A.png
January 20, 2140
SE2158Jan30A.png
January 30, 2158
SE2176Feb10A.png
February 10, 2176
33
SE2194Feb21A.png
February 21, 2194

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2087
SE1803Aug17A.png
August 17, 1803
(Saros 132)
SE1814Jul17T.png
July 17, 1814
(Saros 133)
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1836May15A.png
May 15, 1836
(Saros 135)
SE1847Apr15T.png
April 15, 1847
(Saros 136)
SE1858Mar15A.png
March 15, 1858
(Saros 137)
SE1869Feb11A.png
February 11, 1869
(Saros 138)
SE1880Jan11T.png
January 11, 1880
(Saros 139)
SE1890Dec12H.png
December 12, 1890
(Saros 140)
SE1901Nov11A.png
November 11, 1901
(Saros 141)
SE1912Oct10T.png
October 10, 1912
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1934Aug10A.png
August 10, 1934
(Saros 144)
SE1945Jul09T.png
July 9, 1945
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1967May09P.png
May 9, 1967
(Saros 147)
SE1978Apr07P.png
April 7, 1978
(Saros 148)
SE1989Mar07P.png
March 7, 1989
(Saros 149)
SE2000Feb05P.png
February 5, 2000
(Saros 150)
SE2011Jan04P.png
January 4, 2011
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2032Nov03P.png
November 3, 2032
(Saros 153)
SE2043Oct03A.png
October 3, 2043
(Saros 154)
SE2054Sep02P.png
September 2, 2054
(Saros 155)
SE2065Aug02P.png
August 2, 2065
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1836Nov09T.gif
November 9, 1836
(Saros 140)
SE1865Oct19A.png
October 19, 1865
(Saros 141)
SE1894Sep29T.gif
September 29, 1894
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1981Jul31T.png
July 31, 1981
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2039Jun21A.png
June 21, 2039
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2097May11T.png
May 11, 2097
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
SE2155Apr02A.png
April 2, 2155
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)

Notes

  1. "September 10, 1923 Total Solar Eclipse". timeanddate. Retrieved 2 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 August 2024.
  3. 1 2 3 "SUN'S FROLIC PRIVATE". The Los Angeles Times. Los Angeles, California. 1923-09-11. p. 2. Retrieved 2023-10-15 via Newspapers.com.
  4. "Moon's welcome shadow falls across face of September sun". Bakersfield Morning Echo. Bakersfield, California. 1923-09-11. p. 1. Retrieved 2023-10-15 via Newspapers.com.
  5. "Sun in Eclipse, Seen on Academy Roof, Looks Like Nicked Cheese". Times Union. Brooklyn, New York City. 1923-09-11. p. 3. Retrieved 2023-10-15 via Newspapers.com.
  6. "1923 Solar Eclipse Expedition". Photographic Archive. University of Chicago. Archived from the original on 20 October 2020.
  7. Miller, John Anthony; Marriott, Ross Walter (1925). "Observations of the total solar eclipse of September 10, 1923". Archived from the original on 28 August 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  8. "Total Solar Eclipse of 1923 Sep 10". EclipseWise.com. Retrieved 2 August 2024.
  9. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  10. "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from the Dutch East Indies, North Borneo, and the South Seas Mandate of Japan.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Tokelau, Cook Islands, French Polynesia, Chile and Argentina. This solar eclipse occurred over 3 months after the final game of 1958 FIFA World Cup.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.

<span class="mw-page-title-main">Solar eclipse of April 9, 2043</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, April 9, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 25, 2041</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, October 25, 2041, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 24, 2082</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 11, 2097</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 11, 2097, with a magnitude of 1.0538. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 27, 1941</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru, Bolivia and Brazil.

<span class="mw-page-title-main">Solar eclipse of August 31, 1932</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 31, 1932, with a magnitude of 1.0257. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Northwest Territories and Quebec in Canada, and northeastern Vermont, New Hampshire, southwestern Maine, northeastern tip of Massachusetts and northeastern Cape Cod in the United States.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 17, 1923</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, March 17, 1923, with a magnitude of 0.931. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.7 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

References