Solar eclipse of December 24, 1927

Last updated
Solar eclipse of December 24, 1927
SE1927Dec24P.png
Map
Type of eclipse
NaturePartial
Gamma −1.2416
Magnitude 0.549
Maximum eclipse
Coordinates 66°06′S47°42′W / 66.1°S 47.7°W / -66.1; -47.7
Times (UTC)
Greatest eclipse3:59:41
References
Saros 150 (12 of 71)
Catalog # (SE5000) 9345

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

Eclipses in 1927

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 150

Inex

Triad

Solar eclipses of 1924–1928

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The partial solar eclipses on March 5, 1924 and August 30, 1924 occur in the previous lunar year eclipse set, and the solar eclipses on May 19, 1928 and November 12, 1928 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1924 to 1928
Ascending node Descending node
SarosMapGammaSarosMapGamma
115 July 31, 1924
SE1924Jul31P.png
Partial
−1.4459120 January 24, 1925
SE1925Jan24T.png
Total
0.8661
125 July 20, 1925
SE1925Jul20A.png
Annular
−0.7193130
Solar eclipse of 1926-01-14, John A. Miller.jpg
Totality in Sumatra, Indonesia
January 14, 1926
SE1926Jan14T.png
Total
0.1973
135 July 9, 1926
SE1926Jul09A.png
Annular
0.0538140 January 3, 1927
SE1927Jan03A.png
Annular
−0.4956
145 June 29, 1927
SE1927Jun29T.png
Total
0.8163150 December 24, 1927
SE1927Dec24P.png
Partial
−1.2416
155 June 17, 1928
SE1928Jun17P.png
Partial
1.5107

Saros 150

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit. [2]

Series members 5–27 occur between 1801 and 2200:
567
SE1801Oct07P.png
October 7, 1801
SE1819Oct19P.gif
October 19, 1819
SE1837Oct29P.gif
October 29, 1837
8910
SE1855Nov09P.gif
November 9, 1855
SE1873Nov20P.gif
November 20, 1873
SE1891Dec01P.gif
December 1, 1891
111213
SE1909Dec12P.png
December 12, 1909
SE1927Dec24P.png
December 24, 1927
SE1946Jan03P.png
January 3, 1946
141516
SE1964Jan14P.png
January 14, 1964
SE1982Jan25P.png
January 25, 1982
SE2000Feb05P.png
February 5, 2000
171819
SE2018Feb15P.png
February 15, 2018
SE2036Feb27P.png
February 27, 2036
SE2054Mar09P.png
March 9, 2054
202122
SE2072Mar19P.png
March 19, 2072
SE2090Mar31P.png
March 31, 2090
SE2108Apr11P.gif
April 11, 2108
232425
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
2627
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 5, 1848 and July 30, 1935
March 5–6December 22–24October 9–11July 29–30May 17–18
108110112114116
SE1848Mar05P.gif
March 5, 1848
SE1859Jul29P.gif
July 29, 1859
SE1863May17P.gif
May 17, 1863
118120122124126
SE1867Mar06A.gif
March 6, 1867
SE1870Dec22T.png
December 22, 1870
SE1874Oct10An.gif
October 10, 1874
SE1878Jul29T.png
July 29, 1878
SE1882May17T.png
May 17, 1882
128130132134136
SE1886Mar05A.gif
March 5, 1886
SE1889Dec22T.png
December 22, 1889
SE1893Oct09A.png
October 9, 1893
SE1897Jul29A.png
July 29, 1897
SE1901May18T.png
May 18, 1901
138140142144146
SE1905Mar06A.png
March 6, 1905
SE1908Dec23H.png
December 23, 1908
SE1912Oct10T.png
October 10, 1912
SE1916Jul30A.png
July 30, 1916
SE1920May18P.png
May 18, 1920
148150152154
SE1924Mar05P.png
March 5, 1924
SE1927Dec24P.png
December 24, 1927
SE1931Oct11P.png
October 11, 1931
SE1935Jul30P.png
July 30, 1935

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1982
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1818Oct29T.gif
October 29, 1818
(Saros 140)
SE1829Sep28A.gif
September 28, 1829
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1851Jul28T.png
July 28, 1851
(Saros 143)
SE1862Jun27P.gif
June 27, 1862
(Saros 144)
SE1873May26P.gif
May 26, 1873
(Saros 145)
SE1884Apr25P.gif
April 25, 1884
(Saros 146)
SE1895Mar26P.gif
March 26, 1895
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1917Jan23P.png
January 23, 1917
(Saros 149)
SE1927Dec24P.png
December 24, 1927
(Saros 150)
SE1938Nov21P.png
November 21, 1938
(Saros 151)
SE1949Oct21P.png
October 21, 1949
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1812Mar13P.gif
March 13, 1812
(Saros 146)
SE1841Feb21P.gif
February 21, 1841
(Saros 147)
SE1870Jan31P.gif
January 31, 1870
(Saros 148)
SE1899Jan11P.gif
January 11, 1899
(Saros 149)
SE1927Dec24P.png
December 24, 1927
(Saros 150)
SE1956Dec02P.png
December 2, 1956
(Saros 151)
SE1985Nov12T.png
November 12, 1985
(Saros 152)
SE2014Oct23P.png
October 23, 2014
(Saros 153)
SE2043Oct03A.png
October 3, 2043
(Saros 154)
SE2072Sep12T.png
September 12, 2072
(Saros 155)
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
(Saros 156)
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
(Saros 157)
Saros158 06van70 SE2159Jul15P.jpg
July 15, 2159
(Saros 158)
Saros159 04van70 SE2188Jun24P.jpg
June 24, 2188
(Saros 159)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, December 4, 1983, with a magnitude of 0.9666. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 18, 1977</span> Annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, April 18, 1977, with a magnitude of 0.9449. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in South West Africa, Angola, Zambia, southeastern Zaire, northern Malawi, Tanzania, Seychelles and the whole British Indian Ocean Territory.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

<span class="mw-page-title-main">Solar eclipse of March 31, 2071</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 1, 1929</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, November 1, 1929, with a magnitude of 0.9649. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Spanish Sahara, French West Africa, British Gold Coast, French Togoland including capital Lomé, Portuguese São Tomé and Príncipe, French Equatorial Africa including capital Brazzaville, Belgian Congo including capital Léopoldville, Northern Rhodesia, British Tanganyika including capital Dar es Salaam, and British Seychelles including capital Victoria.

<span class="mw-page-title-main">Solar eclipse of October 21, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, October 21, 1949, with a magnitude of 0.9638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 28, 1922</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, March 28, 1922, with a magnitude of 0.9381. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru, Brazil, French West Africa, British Gambia including capital Banjul, French Algeria, Italian Libya, Egypt, Kingdom of Hejaz and Sultanate of Nejd, and British Kuwait.

<span class="mw-page-title-main">Solar eclipse of June 19, 1917</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, June 19, 1917, with a magnitude of 0.4729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.