Solar eclipse of December 24, 1992

Last updated
Solar eclipse of December 24, 1992
SE1992Dec24P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0711
Magnitude 0.8422
Maximum eclipse
Coordinates 65°42′N155°42′E / 65.7°N 155.7°E / 65.7; 155.7
Times (UTC)
Greatest eclipse0:31:41
References
Saros 151 (13 of 72)
Catalog # (SE5000) 9492

A partial solar eclipse occurred on December 24, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

Images

SE1992Dec24P.gif

Eclipses of 1992

Solar eclipses of 1990–1992

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1] This semester series contains only 7 eclipses.

Solar eclipse series sets from 1990–1992
Ascending node Descending node
SarosMapGammaSarosMapGamma
1111989 February 6-1.565501161989 August 11.58396
121 1990 January 26
SE1990Jan26A.png
Annular
-0.94571126 1990 July 22
SE1990Jul22T.png
Total
0.75972
131 1991 January 15
SE1991Jan15A.png
Annular
-0.27275136
Eclipse CR 1991 a zoom.jpg
From Playas del Coco
1991 July 11
SE1991Jul11T.png
Total
-0.00412
141 1992 January 4
SE1992Jan04A.png
Annular
0.40908146 1992 June 30
SE1992Jun30T.png
Total
-0.75120
151 1992 December 24
SE1992Dec24P.png
Partial
1.071061561993 June 20-1.56439

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25October 12–13July 31-Aug 1May 18–20March 7–8
9193959799
December 23, 1878October 12, 1882July 31, 1886May 18, 1890March 7, 1894
101103105107109
December 23, 1897October 12, 1901August 1, 1905May 19, 1909March 8, 1913
111113115117119
SE1916Dec24P.png
December 24, 1916
October 12, 1920 SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121123125127129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131133135137139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141143145147149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151153155157159
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000
May 19, 2004March 7, 2008
161163165167169
December 24, 2011October 13, 2015August 1, 2019May 19, 2023March 8, 2027

Related Research Articles

Solar eclipse of November 25, 2011 21st-century partial solar eclipse

A partial solar eclipse occurred on 25 November, 2011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of February 5, 2000 20th-century partial solar eclipse

A partial solar eclipse occurred on February 5, 2000. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was only visible over Antarctica.

Solar eclipse of July 1, 2000 20th-century partial solar eclipse

A partial solar eclipse occurred on July 1, 2000. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This eclipse occurred near the south pole, and was visible from the southern tip of South America at sunset.

Solar eclipse of July 31, 2000 20th-century partial solar eclipse

A partial solar eclipse occurred on July 31, 2000. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible from northern Russia, northeastern Scandinavia, northern Greenland, western Canada, and the northwestern United States.

Solar eclipse of December 4, 1983 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on December 4, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

Solar eclipse of June 11, 1983 20th-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node of the orbit on June 11, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee, the Moon's apparent diameter was larger.

Solar eclipse of November 25, 2030 Future total solar eclipse

A total solar eclipse will occur on Monday, November 25, 2030. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of December 5, 2048

A total solar eclipse will occur on December 5, 2048. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of June 30, 1992 20th-century total solar eclipse

A total solar eclipse occurred on June 30, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southeastern Uruguay and southern tip of Rio Grande do Sul, Brazil.

Solar eclipse of January 4, 1992 20th-century annular solar eclipse

An annular solar eclipse occurred on January 4–5, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Federal States of Micronesia, Nauru, Kiribati, Baker Island, Palmyra Atoll, Kingman Reef, and southwestern California, including the southwestern part of Los Angeles.

Solar eclipse of January 15, 1991 20th-century annular solar eclipse

An annular solar eclipse occurred on January 15–16, 1991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in southwestern Western Australia, Tasmania, New Zealand and French Polynesia. It was visible over Australia as a partial solar eclipse at sunrise on January 16.

Solar eclipse of February 6, 2027 Future annular solar eclipse

An annular solar eclipse will occur on February 6, 2027. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of November 14, 2031 Future total solar eclipse

A total solar eclipse will occur on November 14, 2031. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of December 26, 2038 Future total solar eclipse

A total solar eclipse will occur on December 26, 2038. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of June 21, 1982 20th-century partial solar eclipse

A partial solar eclipse occurred on June 21, 1982. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 7 minutes before perigee, the Moon's apparent diameter was completely larger.

Solar eclipse of December 15, 1982 20th-century partial solar eclipse

A partial solar eclipse occurred on December 15, 1982. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 2.7 days before apogee, the Moon's apparent diameter was smaller.

Solar eclipse of January 4, 1973 20th-century annular solar eclipse

An annular solar eclipse occurred on January 4, 1973 with an eclipse magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.

Solar eclipse of December 25, 1954 20th-century annular solar eclipse

An annular solar eclipse occurred on December 25, 1954, also known as "The christmas 1954 solar eclipse". A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the southwestern tip of South West Africa, South Africa, Ashmore and Cartier Islands except Cartier Island, Indonesia and Portuguese Timor.

Solar eclipse of November 25, 2049 Future total solar eclipse

A total solar eclipse will occur on November 25, 2049. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of March 19, 2072 Future partial solar eclipse

A partial solar eclipse will occur on March 19, 2072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.