Solar eclipse of August 1, 2008

Last updated
Solar eclipse of August 1, 2008
Corona.jpg
Totality showing corona from Kumul, Xinjiang
SE2008Aug01T.png
Map
Type of eclipse
NatureTotal
Gamma 0.8307
Magnitude 1.0394
Maximum eclipse
Duration147 s (2 min 27 s)
Coordinates 65°42′N72°18′E / 65.7°N 72.3°E / 65.7; 72.3
Max. width of band237 km (147 mi)
Times (UTC)
(P1) Partial begin04:06.8
(U1) Total begin21:07.3
Greatest eclipse10:22:12
(U4) Total end21:28.3
(P4) Partial end38:27.7
References
Saros 126 (47 of 72)
Catalog # (SE5000) 9526

A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 1, 2008, [1] [2] [3] with a magnitude of 1.0394. [4] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee (on July 30, 2008, at 0:20 UTC), the Moon's apparent diameter was larger. [5]

Contents

The eclipse was visible from a narrow corridor through northern Canada (Nunavut), Greenland, central Russia, eastern Kazakhstan, western Mongolia and China. [6] Visible north of the Arctic Circle, it belonged to the so-called midnight sun eclipses. The largest city in its path was Novosibirsk in Russia. [7] A partial eclipse could be seen from the much broader path of the Moon's penumbra, including northern Canada, Greenland, and most of Europe and Asia. [6]

The moon's apparent diameter was 1 arcminute, 17.8 arcseconds (77.8 arcseconds) larger than the annular solar eclipse of February 7, 2008.

It was described by observers as "special for its colours around the horizon. There were wonderful oranges and reds all around, the clouds lit up, some dark in silhouette, some golden, glowing yellowy-orange in the distance. You could see the shadow approaching against the clouds and then rushing away as it left." [8] [ citation needed ]

Start of eclipse: Canada and Greenland

SE2008Aug01T.gif
Animated path

The eclipse began in the far north of Canada in Nunavut at 09:21 UT, the zone of totality being 206 km wide, and lasting for 1 minute 30 seconds. The path of the eclipse then headed north-east, crossing over northern Greenland and reaching the northernmost latitude of 83° 47′ at 09:38 UT before dipping down into Russia. [9]

The path of totality touched the northeast corner of Kvitøya, an uninhabited Norwegian island in the Svalbard archipelago, at 09:47 UT.[ citation needed ]

Greatest eclipse: Russia

The eclipse reached the Russian mainland at 10:10 UT, [9] with a path 232 km wide and a duration of 2 minutes 26 seconds.[ citation needed ] The greatest eclipse occurred shortly after, at 10:21:07 UT at coordinates 65°39′N72°18′E / 65.650°N 72.300°E / 65.650; 72.300 (close to Nadym), when the path was 237 km wide, and the duration was 2 minutes 27 seconds. Cities in the path of the total eclipse included Megion, Nizhnevartovsk, Strezhevoy, Novosibirsk and Barnaul. [9] Around 10,000 tourists were present in Novosibirsk, the largest city to experience the eclipse. [7] For Gorno-Altaysk the eclipse was the second consecutive total solar eclipse after the March 2006 eclipse. [10]

Conclusion: Mongolia and China

The path of the eclipse then moved south-east, crossing into Mongolia and just clipping Kazakhstan at around 10:58 UT. The path here was 252 km wide, but the duration decreased to 2 minutes 10 seconds. The path then ran down the China-Mongolia border, ending in China at 11:18 UT, with an eclipse lasting 1 minute 27 seconds at sunset.[ citation needed ] The total eclipse finished at 11:21 UT. The total eclipse passed over Altay City, Hami and Jiuquan. [9] Around 10,000 people were gathered to watch the eclipse in Hami. [7]

Partial eclipse

A partial eclipse was seen from the much broader path of the Moon's penumbra, including the north east coast of North America and most of Europe and Asia. [6] In London, England, the partial eclipse began at 09:33 BST, with a maximum eclipse of 12% at 10:18 BST, before concluding at 11:05 BST. At Edinburgh the partial eclipse was 23.5%, whilst it was 36% in Lerwick in the Shetland Isles. [11]

LTU 1111

German charter airline LTU, now trading as Air Berlin, operated a special flight from Düsseldorf to the North Pole to observe the eclipse. Flight number LT 1111 spent over 11 hours in the air, returning to base at 6pm after flying a planeload of eclipse chasers, scientists, journalists and TV crews to watch the celestial event. The route also included a low-level sightseeing tour of Svalbard before the eclipse and the magnetic pole afterwards.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [12]

August 1, 2008 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2008 August 01 at 08:05:11.5 UTC
First Umbral External Contact2008 August 01 at 09:22:12.6 UTC
First Central Line2008 August 01 at 09:23:43.3 UTC
First Umbral Internal Contact2008 August 01 at 09:25:15.6 UTC
Equatorial Conjunction2008 August 01 at 09:48:26.9 UTC
Ecliptic Conjunction2008 August 01 at 10:13:39.0 UTC
Greatest Duration2008 August 01 at 10:20:17.1 UTC
Greatest Eclipse2008 August 01 at 10:22:12.3 UTC
Last Umbral Internal Contact2008 August 01 at 11:19:33.2 UTC
Last Central Line2008 August 01 at 11:21:03.1 UTC
Last Umbral External Contact2008 August 01 at 11:22:31.3 UTC
Last Penumbral External Contact2008 August 01 at 12:39:31.7 UTC
August 1, 2008 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03942
Eclipse Obscuration1.08040
Gamma0.83070
Sun Right Ascension08h47m54.1s
Sun Declination+17°51'56.4"
Sun Semi-Diameter15'45.5"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension08h49m08.8s
Moon Declination+18°38'01.6"
Moon Semi-Diameter16'14.1"
Moon Equatorial Horizontal Parallax0°59'34.8"
ΔT65.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August 2008
August 1
Descending node (new moon)
August 16
Ascending node (full moon)
SE2008Aug01T.png Lunar eclipse chart close-08aug16.png
Total solar eclipse
Solar Saros 126
Partial lunar eclipse
Lunar Saros 138

Eclipses in 2008

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 126

Inex

Triad

Solar eclipses of 2008–2011

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [13]

The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2008 to 2011
Ascending node Descending node
SarosMapGammaSarosMapGamma
121
Solar eclipse 2008Feb07-New Zealand-partial-Greg Hewgill.jpg
Partial in Christchurch, New Zealand
February 7, 2008
SE2008Feb07A.png
Annular
−0.95701126
Corona.jpg
Totality in Kumul, Xinjiang, China
August 1, 2008
SE2008Aug01T.png
Total
0.83070
131
Annular solar eclipse pky.png
Annularity in Palangka Raya, Indonesia
January 26, 2009
SE2009Jan26A.png
Annular
−0.28197136
Solar eclipse 22 July 2009 taken by Lutfar Rahman Nirjhar from Bangladesh.jpg
Totality in Kurigram District, Bangladesh
July 22, 2009
SE2009Jul22T.png
Total
0.06977
141
Solar annular eclipse of January 15, 2010 in Jinan, China.jpg
Annularity in Jinan, Shandong, China
January 15, 2010
SE2010Jan15A.png
Annular
0.40016146
Eclipse 2010 Hao 1.JPG
Totality in Hao, French Polynesia
July 11, 2010
SE2010Jul11T.png
Total
−0.67877
151
Solar eclipse poland 4thjan2011.jpg
Partial in Poland
January 4, 2011
SE2011Jan04P.png
Partial
1.06265156 July 1, 2001
SE2011Jul01P.png
Partial
−1.49171

Saros 126

This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810; hybrid eclipses from April 14, 1828 through May 6, 1864; and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 30 seconds on June 26, 1359, and the longest duration of totality was produced by member 45 at 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occur at the Moon’s descending node of orbit. [14]

Series members 36–57 occur between 1801 and 2200:
363738
SE1810Apr04A.gif
April 4, 1810
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
SE1846Apr25H.gif
April 25, 1846
394041
SE1864May06H.gif
May 6, 1864
SE1882May17T.png
May 17, 1882
SE1900May28T.png
May 28, 1900
424344
SE1918Jun08T.png
June 8, 1918
SE1936Jun19T.png
June 19, 1936
SE1954Jun30T.png
June 30, 1954
454647
SE1972Jul10T.png
July 10, 1972
SE1990Jul22T.png
July 22, 1990
SE2008Aug01T.png
August 1, 2008
484950
SE2026Aug12T.png
August 12, 2026
SE2044Aug23T.png
August 23, 2044
SE2062Sep03P.png
September 3, 2062
515253
SE2080Sep13P.png
September 13, 2080
SE2098Sep25P.png
September 25, 2098
Saros126 53van72 SE2116Oct06P.jpg
October 6, 2116
545556
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
Saros126 55van72 SE2152Oct28P.jpg
October 28, 2152
Saros126 56van72 SE2170Nov08P.jpg
November 8, 2170
57
Saros126 57van72 SE2188Nov18P.jpg
November 18, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21March 9December 25–26October 13–14August 1–2
118120122124126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128130132134136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138140142144146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148150152154156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158
SE2069May20P.png
May 20, 2069

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Mar14P.png
March 14, 1801
(Saros 107)
SE1812Feb12P.gif
February 12, 1812
(Saros 108)
SE1823Jan12P.gif
January 12, 1823
(Saros 109)
SE1844Nov10P.gif
November 10, 1844
(Saros 111)
SE1877Aug09P.gif
August 9, 1877
(Saros 114)
SE1888Jul09P.gif
July 9, 1888
(Saros 115)
SE1899Jun08P.gif
June 8, 1899
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1921Apr08A.png
April 8, 1921
(Saros 118)
SE1932Mar07A.png
March 7, 1932
(Saros 119)
SE1943Feb04T.png
February 4, 1943
(Saros 120)
SE1954Jan05A.png
January 5, 1954
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE1986Oct03H.png
October 3, 1986
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2008Aug01T.png
August 1, 2008
(Saros 126)
SE2019Jul02T.png
July 2, 2019
(Saros 127)
SE2030Jun01A.png
June 1, 2030
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2052Mar30T.png
March 30, 2052
(Saros 130)
SE2063Feb28A.png
February 28, 2063
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2106Oct26A.png
October 26, 2106
(Saros 135)
SE2117Sep26T.png
September 26, 2117
(Saros 136)
SE2128Aug25A.png
August 25, 2128
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2161May25A.png
May 25, 2161
(Saros 140)
SE2172Apr23A.png
April 23, 2172
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)
SE2194Feb21A.png
February 21, 2194
(Saros 143)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Dec21A.gif
December 21, 1805
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1863Nov11A.png
November 11, 1863
(Saros 121)
SE1892Oct20P.gif
October 20, 1892
(Saros 122)
SE1921Oct01T.png
October 1, 1921
(Saros 123)
SE1950Sep12T.png
September 12, 1950
(Saros 124)
SE1979Aug22A.png
August 22, 1979
(Saros 125)
SE2008Aug01T.png
August 1, 2008
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2066Jun22A.png
June 22, 2066
(Saros 128)
SE2095Jun02T.png
June 2, 2095
(Saros 129)
SE2124May14T.png
May 14, 2124
(Saros 130)
SE2153Apr23A.png
April 23, 2153
(Saros 131)
SE2182Apr03H.png
April 3, 2182
(Saros 132)

Notes

  1. "August 1, 2008 Total Solar Eclipse". timeanddate. Retrieved 11 August 2024.
  2. "Russians marvel as moon blocks out sun". The Park City Daily News. 2008-08-01. p. A5. Retrieved 2023-10-25 via Newspapers.com.
  3. "'Olympics eclipse' wows crowds along Silk Road". The Charlotte Observer. 2008-08-01. p. A5. Retrieved 2023-10-25 via Newspapers.com.
  4. Espenak, Fred; Anderson, Jay (July 2004). "Total Solar Eclipse of 2008 August 01 – Parameters". NASA. Archived from the original on 2007-03-21. Retrieved 2008-08-01.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 11 August 2024.
  6. 1 2 3 "Total Solar Eclipse of 2008 August 01". NASA. August 1, 2008. Archived from the original on March 9, 2008. Retrieved 2008-08-01.
  7. 1 2 3 "Total eclipse a dark show for thousands". Herald Sun. August 1, 2008. Archived from the original on 2008-09-19. Retrieved 2008-08-01.
  8. Dr John Mason describing the eclipse directly after observing it.
  9. 1 2 3 4 Espenak, Fred; Jay Anderson (March 2007). Total Eclipse of 2008 August 01 - NASA Technical Bulletin 2007–214149 . Retrieved 2008-08-01.
  10. Eclipses and Transits Visible in Gorno-Altaysk. timeanddate.com
  11. Royal Astronomical Society (August 1, 2008). "Solar Eclipse On The Morning Of August 1st". ScienceDaily. Retrieved 2008-08-01.
  12. "Total Solar Eclipse of 2008 Aug 01". EclipseWise.com. Retrieved 11 August 2024.
  13. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  14. "NASA - Catalog of Solar Eclipses of Saros 126". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> Total eclipse

A total solar eclipse occurred at the Moon’s descending node of orbit on Wednesday, March 29, 2006, with a magnitude of 1.0515. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 22, 2009</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, July 22, 2009, with a magnitude of 1.07991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 11, 1999</span> Total eclipse

A total solar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, August 11, 1999, with a magnitude of 1.0286. A solar eclipse occurs when the moon passes between earth and the sun, thereby totally or partly obscuring the image of the sun for a viewer on earth. A total solar eclipse occurs when the moon's apparent diameter is larger than the sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 23, 2003</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, November 23 and Monday, November 24, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 25 minutes before perigee, the Moon's apparent diameter was larger. Perigee did occur just past the greatest point of this eclipse.

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 3, 2005</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, October 3, 2005, with a magnitude of 0.958. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.75 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 11, 2010</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, July 11 and Wednesday, July 12, 2010, with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 11, 1991</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 11, 1991, with a magnitude of 1.08. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 8 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2015</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Friday, March 20, 2015, with a magnitude of 1.0445. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 14, 2004</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, October 13 and Thursday, October 14, 2004, with a magnitude of 0.9282. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 25, 2011</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Friday, November 25, 2011, with a magnitude of 0.9047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid event, a narrow total eclipse, and beginning as an annular eclipse and concluding as a total eclipse, in this particular case. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 6, 2019</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 6, 2019, with a magnitude of 0.7145. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in East Asia and the North Pacific.

<span class="mw-page-title-main">Solar eclipse of August 11, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 11, 2018, with a magnitude of 0.7368. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in the north of North America, Greenland, Northern Europe, and northeastern Asia.

<span class="mw-page-title-main">Solar eclipse of March 9, 1997</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, March 8 and Sunday, March 9, 1997, with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18.5 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 12, 2026</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, August 12, 2026, with a magnitude of 1.0386. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 4, 1943</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 22 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 1, 2079</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, May 1, 2079, with a magnitude of 1.0512. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse will be visible in Greenland, parts of eastern Canada and parts of the northeastern United States.

References

Photos:

Video