Solar eclipse of August 1, 2008 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.8307 |
Magnitude | 1.0394 |
Maximum eclipse | |
Duration | 147 s (2 min 27 s) |
Coordinates | 65°42′N72°18′E / 65.7°N 72.3°E |
Max. width of band | 237 km (147 mi) |
Times (UTC) | |
(P1) Partial begin | 04:06.8 |
(U1) Total begin | 21:07.3 |
Greatest eclipse | 10:22:12 |
(U4) Total end | 21:28.3 |
(P4) Partial end | 38:27.7 |
References | |
Saros | 126 (47 of 72) |
Catalog # (SE5000) | 9526 |
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 1, 2008, [1] [2] [3] with a magnitude of 1.0394. [4] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee (on July 30, 2008, at 0:20 UTC), the Moon's apparent diameter was larger. [5]
The eclipse was visible from a narrow corridor through northern Canada (Nunavut), Greenland, central Russia, eastern Kazakhstan, western Mongolia and China. [6] Visible north of the Arctic Circle, it belonged to the so-called midnight sun eclipses. The largest city in its path was Novosibirsk in Russia. [7] A partial eclipse could be seen from the much broader path of the Moon's penumbra, including northern Canada, Greenland, and most of Europe and Asia. [6]
The moon's apparent diameter was 1 arcminute, 17.8 arcseconds (77.8 arcseconds) larger than the annular solar eclipse of February 7, 2008.
It was described by observers as "special for its colours around the horizon. There were wonderful oranges and reds all around, the clouds lit up, some dark in silhouette, some golden, glowing yellowy-orange in the distance. You could see the shadow approaching against the clouds and then rushing away as it left." [8] [ citation needed ]
The eclipse began in the far north of Canada in Nunavut at 09:21 UT, the zone of totality being 206 km wide, and lasting for 1 minute 30 seconds. The path of the eclipse then headed north-east, crossing over northern Greenland and reaching the northernmost latitude of 83° 47′ at 09:38 UT before dipping down into Russia. [9]
The path of totality touched the northeast corner of Kvitøya, an uninhabited Norwegian island in the Svalbard archipelago, at 09:47 UT.[ citation needed ]
The eclipse reached the Russian mainland at 10:10 UT, [9] with a path 232 km wide and a duration of 2 minutes 26 seconds.[ citation needed ] The greatest eclipse occurred shortly after, at 10:21:07 UT at coordinates 65°39′N72°18′E / 65.650°N 72.300°E (close to Nadym), when the path was 237 km wide, and the duration was 2 minutes 27 seconds. Cities in the path of the total eclipse included Megion, Nizhnevartovsk, Strezhevoy, Novosibirsk and Barnaul. [9] Around 10,000 tourists were present in Novosibirsk, the largest city to experience the eclipse. [7] For Gorno-Altaysk the eclipse was the second consecutive total solar eclipse after the March 2006 eclipse. [10]
The path of the eclipse then moved south-east, crossing into Mongolia and just clipping Kazakhstan at around 10:58 UT. The path here was 252 km wide, but the duration decreased to 2 minutes 10 seconds. The path then ran down the China-Mongolia border, ending in China at 11:18 UT, with an eclipse lasting 1 minute 27 seconds at sunset.[ citation needed ] The total eclipse finished at 11:21 UT. The total eclipse passed over Altay City, Hami and Jiuquan. [9] Around 10,000 people were gathered to watch the eclipse in Hami. [7]
A partial eclipse was seen from the much broader path of the Moon's penumbra, including the north east coast of North America and most of Europe and Asia. [6] In London, England, the partial eclipse began at 09:33 BST, with a maximum eclipse of 12% at 10:18 BST, before concluding at 11:05 BST. At Edinburgh the partial eclipse was 23.5%, whilst it was 36% in Lerwick in the Shetland Isles. [11]
German charter airline LTU, now trading as Air Berlin, operated a special flight from Düsseldorf to the North Pole to observe the eclipse. Flight number LT 1111 spent over 11 hours in the air, returning to base at 6pm after flying a planeload of eclipse chasers, scientists, journalists and TV crews to watch the celestial event. The route also included a low-level sightseeing tour of Svalbard before the eclipse and the magnetic pole afterwards.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [12]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2008 August 01 at 08:05:11.5 UTC |
First Umbral External Contact | 2008 August 01 at 09:22:12.6 UTC |
First Central Line | 2008 August 01 at 09:23:43.3 UTC |
First Umbral Internal Contact | 2008 August 01 at 09:25:15.6 UTC |
Equatorial Conjunction | 2008 August 01 at 09:48:26.9 UTC |
Ecliptic Conjunction | 2008 August 01 at 10:13:39.0 UTC |
Greatest Duration | 2008 August 01 at 10:20:17.1 UTC |
Greatest Eclipse | 2008 August 01 at 10:22:12.3 UTC |
Last Umbral Internal Contact | 2008 August 01 at 11:19:33.2 UTC |
Last Central Line | 2008 August 01 at 11:21:03.1 UTC |
Last Umbral External Contact | 2008 August 01 at 11:22:31.3 UTC |
Last Penumbral External Contact | 2008 August 01 at 12:39:31.7 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.03942 |
Eclipse Obscuration | 1.08040 |
Gamma | 0.83070 |
Sun Right Ascension | 08h47m54.1s |
Sun Declination | +17°51'56.4" |
Sun Semi-Diameter | 15'45.5" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 08h49m08.8s |
Moon Declination | +18°38'01.6" |
Moon Semi-Diameter | 16'14.1" |
Moon Equatorial Horizontal Parallax | 0°59'34.8" |
ΔT | 65.6 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
August 1 Descending node (new moon) | August 16 Ascending node (full moon) |
---|---|
Total solar eclipse Solar Saros 126 | Partial lunar eclipse Lunar Saros 138 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [13]
The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2008 to 2011 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 Partial in Christchurch, New Zealand | February 7, 2008 Annular | −0.95701 | 126 Totality in Kumul, Xinjiang, China | August 1, 2008 Total | 0.83070 | |
131 Annularity in Palangka Raya, Indonesia | January 26, 2009 Annular | −0.28197 | 136 Totality in Kurigram District, Bangladesh | July 22, 2009 Total | 0.06977 | |
141 Annularity in Jinan, Shandong, China | January 15, 2010 Annular | 0.40016 | 146 Totality in Hao, French Polynesia | July 11, 2010 Total | −0.67877 | |
151 Partial in Poland | January 4, 2011 Partial | 1.06265 | 156 | July 1, 2001 Partial | −1.49171 |
This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810; hybrid eclipses from April 14, 1828 through May 6, 1864; and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 11 at 6 minutes, 30 seconds on June 26, 1359, and the longest duration of totality was produced by member 45 at 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occur at the Moon’s descending node of orbit. [14]
Series members 36–57 occur between 1801 and 2200: | ||
---|---|---|
36 | 37 | 38 |
April 4, 1810 | April 14, 1828 | April 25, 1846 |
39 | 40 | 41 |
May 6, 1864 | May 17, 1882 | May 28, 1900 |
42 | 43 | 44 |
June 8, 1918 | June 19, 1936 | June 30, 1954 |
45 | 46 | 47 |
July 10, 1972 | July 22, 1990 | August 1, 2008 |
48 | 49 | 50 |
August 12, 2026 | August 23, 2044 | September 3, 2062 |
51 | 52 | 53 |
September 13, 2080 | September 25, 2098 | October 6, 2116 |
54 | 55 | 56 |
October 17, 2134 | October 28, 2152 | November 8, 2170 |
57 | ||
November 18, 2188 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between May 21, 1993 and May 20, 2069 | ||||
---|---|---|---|---|
May 20–21 | March 9 | December 25–26 | October 13–14 | August 1–2 |
118 | 120 | 122 | 124 | 126 |
May 21, 1993 | March 9, 1997 | December 25, 2000 | October 14, 2004 | August 1, 2008 |
128 | 130 | 132 | 134 | 136 |
May 20, 2012 | March 9, 2016 | December 26, 2019 | October 14, 2023 | August 2, 2027 |
138 | 140 | 142 | 144 | 146 |
May 21, 2031 | March 9, 2035 | December 26, 2038 | October 14, 2042 | August 2, 2046 |
148 | 150 | 152 | 154 | 156 |
May 20, 2050 | March 9, 2054 | December 26, 2057 | October 13, 2061 | August 2, 2065 |
158 | ||||
May 20, 2069 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 14, 1801 (Saros 107) | February 12, 1812 (Saros 108) | January 12, 1823 (Saros 109) | November 10, 1844 (Saros 111) | |
August 9, 1877 (Saros 114) | July 9, 1888 (Saros 115) | June 8, 1899 (Saros 116) | ||
May 9, 1910 (Saros 117) | April 8, 1921 (Saros 118) | March 7, 1932 (Saros 119) | February 4, 1943 (Saros 120) | January 5, 1954 (Saros 121) |
December 4, 1964 (Saros 122) | November 3, 1975 (Saros 123) | October 3, 1986 (Saros 124) | September 2, 1997 (Saros 125) | August 1, 2008 (Saros 126) |
July 2, 2019 (Saros 127) | June 1, 2030 (Saros 128) | April 30, 2041 (Saros 129) | March 30, 2052 (Saros 130) | February 28, 2063 (Saros 131) |
January 27, 2074 (Saros 132) | December 27, 2084 (Saros 133) | November 27, 2095 (Saros 134) | October 26, 2106 (Saros 135) | September 26, 2117 (Saros 136) |
August 25, 2128 (Saros 137) | July 25, 2139 (Saros 138) | June 25, 2150 (Saros 139) | May 25, 2161 (Saros 140) | April 23, 2172 (Saros 141) |
March 23, 2183 (Saros 142) | February 21, 2194 (Saros 143) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
December 21, 1805 (Saros 119) | November 30, 1834 (Saros 120) | November 11, 1863 (Saros 121) |
October 20, 1892 (Saros 122) | October 1, 1921 (Saros 123) | September 12, 1950 (Saros 124) |
August 22, 1979 (Saros 125) | August 1, 2008 (Saros 126) | July 13, 2037 (Saros 127) |
June 22, 2066 (Saros 128) | June 2, 2095 (Saros 129) | May 14, 2124 (Saros 130) |
April 23, 2153 (Saros 131) | April 3, 2182 (Saros 132) |
A total solar eclipse occurred at the Moon’s descending node of orbit on Wednesday, March 29, 2006, with a magnitude of 1.0515. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, July 22, 2009, with a magnitude of 1.07991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, August 11, 1999, with a magnitude of 1.0286. A solar eclipse occurs when the moon passes between earth and the sun, thereby totally or partly obscuring the image of the sun for a viewer on earth. A total solar eclipse occurs when the moon's apparent diameter is larger than the sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, November 23 and Monday, November 24, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 25 minutes before perigee, the Moon's apparent diameter was larger. Perigee did occur just past the greatest point of this eclipse.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, October 3, 2005, with a magnitude of 0.958. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.75 days after apogee, the Moon's apparent diameter was smaller.
A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, July 11 and Wednesday, July 12, 2010, with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 11, 1991, with a magnitude of 1.08. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 8 hours after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, March 20, 2015, with a magnitude of 1.0445. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours after perigee, the Moon's apparent diameter was larger.
A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, October 13 and Thursday, October 14, 2004, with a magnitude of 0.9282. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon’s ascending node of orbit on Friday, November 25, 2011, with a magnitude of 0.9047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid event, a narrow total eclipse, and beginning as an annular eclipse and concluding as a total eclipse, in this particular case. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter was larger.
A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 6, 2019, with a magnitude of 0.7145. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in East Asia and the North Pacific.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 11, 2018, with a magnitude of 0.7368. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in the north of North America, Greenland, Northern Europe, and northeastern Asia.
A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, March 8 and Sunday, March 9, 1997, with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18.5 hours after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, August 12, 2026, with a magnitude of 1.0386. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 22 hours after perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, May 1, 2079, with a magnitude of 1.0512. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse will be visible in Greenland, parts of eastern Canada and parts of the northeastern United States.
Photos:
Video