August 2008 lunar eclipse

Last updated

Partial lunar eclipse
2008/8/16
Saros (member) 138 (29)
Recent <S <T < > T> S>
20080816eclipsed2.jpg
Cape Town, South Africa
Lunar eclipse chart close-2008Aug16.png
The Moon passes right to left through the Earth's northern shadow
Gamma [1] 0.5647
Duration (hr:mn:sc)
Partial3:08:08
Penumbral5:30:31
Contacts
P118:24:50 UTC
U119:36:05 UTC
Greatest21:10:06 UTC
U422:44:13 UTC
P423:55:21 UTC
Lunar eclipse chart-08aug16.png
At ascending node in Capricornus

A partial lunar eclipse took place on 16 August 2008, the second of two lunar eclipses in 2008, with the first being a total eclipse on 20 February 2008. The next lunar eclipse was a penumbral eclipse occurring on 9 February 2009, while the next total lunar eclipse occurred on 21 December 2010.

Contents

The Moon's apparent diameter was 26.2 arcseconds smaller than the 21 February 2008 total lunar eclipse.

Eclipse season

This is the second eclipse this season.

First eclipse this season: 1 August 2008 Total Solar Eclipse

Viewing

NASA chart of the eclipse 2008-08-16 Lunar Eclipse Sketch.png
NASA chart of the eclipse
Lunar eclipse from moon-2008Aug16.png
These simulated views of the earth from the center of the moon during the lunar eclipse show where the eclipse is visible on earth.

Parts of Australia saw it begin before sunrise, while parts of South America saw it end just after sunset. The eclipse is also seen in the Philippines and other parts of Asia at moonset. Parts of Europe, the Middle East and Africa saw it when it is visible.

The penumbral eclipse began at 18:23 UTC, with the partial eclipse beginning at 19:36. The time of greatest eclipse was 21:10. The partial eclipse ended at 22:44, and the penumbral eclipse will ended at 23:57.

The planet Neptune was 2 days past opposition, visible in binoculars as an 8th magnitude "star" just two degrees west and slightly south of the Moon.

Map

Visibility Lunar Eclipse 2008-08-16.png

Relation to other lunar eclipses

Eclipses of 2008

Lunar year series

Lunar eclipse series sets from 2006–2009
Descending node Ascending node
Saros #
and photo
Date
Viewing
Type
Chart
GammaSaros #
and photo
Date
Viewing
Type
Chart
Gamma
113
Lunar eclipse (114948858).jpg
2006 Mar 14
Lunar eclipse from moon-2006Mar14.png
penumbral
Lunar eclipse chart close-06mar14.png
1.0211118
Partial lunar eclipse Sept 7 2006-Mikelens.jpg
2006 Sep 7
Lunar eclipse from moon-2006Sep07.png
partial
Lunar eclipse chart close-2006Sep07.png
−0.9262
123
Total eclipse.jpg
2007 Mar 03
Lunar eclipse from moon-2007Mar03.png
total
Lunar eclipse chart close-07mar03.png
0.3175128
Lunar Eclipse.jpg
2007 Aug 28
Lunar eclipse from moon-2007Aug28.png
total
Lunar eclipse chart close-2007aug28.png
−0.2146
133
February 2008 total lunar eclipse John Buonomo.jpg
2008 Feb 21
Lunar eclipse from moon-2008Feb21.png
total
Lunar eclipse chart close-08feb20.png
−0.3992138
20080816eclipsed2.jpg
2008 Aug 16
Lunar eclipse from moon-2008Aug16.png
partial
Lunar eclipse chart close-2008Aug16.png
0.5646
143
Penumbral lunar eclipse Feb 9 2009 NavneethC.jpg
2009 Feb 09
Lunar eclipse from moon-2009Feb09.png
penumbral
Lunar eclipse chart close-09feb09.png
−1.0640148
Penumbral lunar eclipse Aug 6 2009 John Walker.gif
2009 Aug 06
Lunar eclipse from moon-2009Aug06.png
penumbral
Lunar eclipse chart close-2009aug06.png
1.3572
Last set 2005 Apr 24 Last set 2005 Oct 17
Next set 2009 Dec 31 Next set 2009 Jul 07

Saros series

Lunar saros series 138 has 26 total eclipses between September 7, 2044 and March 24, 2369. The longest eclipse will be on January 7, 2243, and last for 102 minutes.

Partial eclipses will occur between June 24, 1918 and August 13, 2603. Penumbral eclipses will occur between October 15, 1521 and March 30, 2982. [2]

Metonic cycle (19 years)

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.

Metonic lunar eclipse sets 1951–2027
Descending node Ascending node
Saros DateTypeSarosDateType
103 1951 Feb 21.88 Penumbral108 1951 Aug 17.13 Penumbral
Lunar eclipse chart-1951Feb21.png Lunar eclipse chart-1951Aug17.png
113 1970 Feb 21.35 Partial118 1970 Aug 17.14 Partial
Lunar eclipse chart-1970Feb21.png Lunar eclipse chart-1970Aug17.png
123 1989 Feb 20.64 Total128 1989 Aug 17.13 Total
Lunar eclipse chart-1989Feb20.png Lunar eclipse chart-1989Aug17.png
133 2008 Feb 21.14 Total138 2008 Aug 16.88 Partial
Lunar eclipse chart-2008Feb21.png Lunar eclipse chart-08aug16.png
143 2027 Feb 20.96 Penumbral148 2027 Aug 17.30 Penumbral
Lunar eclipse chart-2027Feb20.png Lunar eclipse chart-2027Aug17.png

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [3] This lunar eclipse is related to two total solar eclipses of Solar Saros 145.

11 August 1999 21 August 2017
SE1999Aug11T.png SE2017Aug21T.png

Photo

MoonEclipse By VampBea.png
Progression from Oslo, Norway

See also

Notes

  1. Gamma is the minimum distance of the Moon's shadow axis from Earth's centre in Earth radii at greatest eclipse.
  2. Hermit Eclipse: Eclipse Saros 138
  3. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> 21st-century total solar eclipse

A total solar eclipse occurred on March 29, 2006. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

<span class="mw-page-title-main">March 2007 lunar eclipse</span> Total lunar eclipse of 3 March 2007

A total lunar eclipse took place on 3 March 2007, the first of two eclipses in 2007. The Moon entered the penumbral shadow at 20:18 UTC, and the umbral shadow at 21:30 UTC. The total phase lasted between 22:44 UTC and 23:58 UTC with a distinctive brick-red shade. The Moon left the umbra shadow at 01:11 UTC and left the penumbra shadow at 02:24 UTC 2007-03-04. The second lunar eclipse of 2007 occurred on 28 August.

<span class="mw-page-title-main">February 2008 lunar eclipse</span> Total lunar eclipse of 20 February 2008

A total lunar eclipse occurred on February 20 and February 21, 2008. It was visible in the eastern evening sky on February 20 for all of North and South America, and on February 21 in the predawn western sky from most of Africa and Europe. Greatest Eclipse occurring on Thursday, February 21, 2008, at 03:26:03 UTC, totality lasting 49 minutes and 45.6 seconds.

<span class="mw-page-title-main">December 2011 lunar eclipse</span> Total lunar eclipse of 10 December 2011

A total lunar eclipse took place on 10 December 2011. It was the second of two total lunar eclipses in 2011, the first having occurred on June 15. A lunar eclipse occurs when the Moon is positioned just right in its orbit to pass through Earth's shadow.

<span class="mw-page-title-main">October 2005 lunar eclipse</span> Partial lunar eclipse October 17, 2005

A partial lunar eclipse took place on Monday, October 17, 2005, the second of two lunar eclipses in 2005. A tiny bite out of the Moon may have been visible at maximum, though just 6.25% of the Moon was shadowed in a partial eclipse which lasted for nearly 56 minutes and was visible over east Asia, Australasia, and most of the North America. A shading across the Moon from the Earth's penumbral shadow should have been visible at maximum eclipse.

<span class="mw-page-title-main">March 2006 lunar eclipse</span> Penumbral lunar eclipse 14 March 2006

A penumbral lunar eclipse took place on 14 March 2006, the first of two lunar eclipses in 2006.

<span class="mw-page-title-main">December 2009 lunar eclipse</span>

A partial lunar eclipse was visible on 31 December 2009. It was the last and largest of four minor lunar eclipses in 2009. This lunar eclipse was also notable, because it occurred during a blue moon and was near perigee. The next eclipse on New Year's Eve and blue moon will occur on 31 December 2028.

<span class="mw-page-title-main">April 2014 lunar eclipse</span> Total lunar eclipse in April 2014

A total lunar eclipse took place on 15 April 2014. It was the first of two total lunar eclipses in 2014, and the first in a tetrad. Subsequent eclipses in the tetrad are those of 8 October 2014, 4 April 2015, and 28 September 2015. Occurring 6.7 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">August 2017 lunar eclipse</span> Partial lunar eclipse of August 7, 2017

A partial lunar eclipse took place at the Moon's descending node on the evening of 7 August and the morning pre-dawn on 8 August 2017, the second of two lunar eclipses in 2017. The Moon was only slightly covered by the Earth's umbral shadow at maximum eclipse. The Moon's apparent diameter was smaller because the eclipse occurred only 5 days after apogee.

<span class="mw-page-title-main">November 2022 lunar eclipse</span> Total lunar eclipse on 8 November 2022

A total lunar eclipse occurred on Tuesday, 8 November 2022. The southern limb of the Moon passed through the center of the Earth's shadow. It surpassed the previous eclipse as the longest total lunar eclipse visible from nearly all of North America since 17 August 1989, and until 26 June 2029. Occurring only 5.8 days before apogee, the Moon's apparent diameter was smaller. The next total lunar eclipse will take place on 14 March 2025. A lunar occultation of Uranus happened during the eclipse. It was the first total lunar eclipse on Election Day in US history. This event was referred in media coverage as a "beaver blood moon".

A partial lunar eclipse took place on Saturday, August 27, 1988, the second of two lunar eclipses in 1988, the first being on March 3, 1988. The Earth's shadow on the Moon was clearly visible in this eclipse, with 29.159% of the Moon in shadow; the partial eclipse lasted for 1 hour, 52 minutes and 59.7 seconds. The Moon was only 5 hours and 48 minutes before perigee, making it 6.3% larger than average

A penumbral lunar eclipse took place on Thursday, March 3, 1988, the first of two lunar eclipses in 1988, the second being on August 27, 1988. Earlier sources compute this as a 0.3% partial eclipse lasting under 14 minutes, and newest calculations list it as a penumbral eclipse that never enters the umbral shadow. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours, 53 minutes and 50.6 seconds in all, though for most of it, the eclipse was extremely difficult or impossible to see. The Moon was 2.2 days after apogee, making it 6.1% smaller than average.

A penumbral lunar eclipse took place on Tuesday, January 20, 1981, the first of two lunar eclipses in 1981. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours and 24 minutes in all, though for most of it, the eclipse was extremely difficult or impossible to see. The moon's apparent diameter was larger because the eclipse occurred 5.2 days after perigee.

<span class="mw-page-title-main">November 2021 lunar eclipse</span> Partial lunar eclipse of 19 November 2021

A partial lunar eclipse occurred on 19 November 2021. The eclipse occurred towards a micromoon. This was the longest partial lunar eclipse since 18 February 1440, and the longest until 8 February, 2669; however, many eclipses, including the November 2022 lunar eclipse, have a longer period of umbral contact at next to 3 hours 40 minutes. It was often referred to as a "Beaver Blood Moon" although not technically fulfilling the criteria for a true blood moon (totality).

A penumbral lunar eclipse will take place on Monday, March 25, 2024. It will be visible to the naked eye as 95.57% of the Moon will be immersed in Earth's penumbral shadow.

<span class="mw-page-title-main">August 2026 lunar eclipse</span>

A partial lunar eclipse will take place on Friday 28 August 2026. The moon will be almost be inside the umbra, but not quite be contained within the umbral shadow at greatest eclipse.

<span class="mw-page-title-main">July 2027 lunar eclipse</span>

A penumbral lunar eclipse will take place on 18 July 2027. The Moon will barely clip the edge of the Earth's penumbral shadow, and the eclipse will be impossible to see in practice. The event is listed as a miss by some sources.

A penumbral lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, August 26, 1980, the last of three penumbral lunar eclipses in 1980 with a penumbral magnitude of 0.70891. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 70.891% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 3 hours, 34 minutes and 26 seconds.

<span class="mw-page-title-main">April 1968 lunar eclipse</span> Total lunar eclipse April 13, 1968

A total lunar eclipse took place on Saturday, April 13, 1968, the first of two total eclipses in 1968, the second being on October 6, 1968.

<span class="mw-page-title-main">Solar eclipse of March 9, 2016</span> 21st-century total solar eclipse

A total solar eclipse took place at the Moon's descending node of the orbit on March 8–9, 2016. If viewed from east of the International Date Line, the eclipse took place on March 8 (Tuesday) and elsewhere on March 9 (Wednesday). A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse of March 8–9, 2016 had a magnitude of 1.0450 visible across an area of Pacific Ocean, which started in the Indian Ocean, and ended in the northern Pacific Ocean.