April 1968 lunar eclipse

Last updated
Total Lunar Eclipse
April 13, 1968
(No photo)
Lunar eclipse chart close-1968Apr13.png
The moon passes west to east (right to left) across the Earth's umbral shadow, shown in hourly intervals.
Series 131 (31 of 72)
Duration (hr:mn:sc)
Totality
Partial
Penumbral
Contacts
P1 UTC
U1
U2
Greatest
U3
U4
P4

A total lunar eclipse took place on Saturday, April 13, 1968, the first of two total eclipses in 1968, the second being on October 6, 1968.

Contents

More details

Penumbral Magnitude: 2.07253 (207.253%)

Umbral Magnitude: 1.11164 (111.164%)

Gamma: -0.41732

Epsilon: 0°25’24.96”

Greatest Eclipse = 1968 Apr 13 at 04:47:22.2 UTC

Ecliptic Opposition = 1968 Apr 13 at 04:51:39.2 UTC

Equatorial Opposition = 1968 Apr 13 at 05:09:48.0 UTC

Sun’s Equatorial Right Ascension = 1.439h

Sun’s Equatorial Declination = +9.06°

Sun’s Diameter = 1913.8 arcseconds

Sun’s Equatorial Horizontal Parallax = 17.6 arcseconds

Moon’s Equatorial Right Ascension = 13.426h

Moon’s Equatorial Declination = -9.44°

Moon’s Diameter = 1991.6 arcseconds

Moon’s Equatorial Horizontal Parallax = 7309.4 arcseconds

Earth’s Shadow’s Equatorial Right Ascension = 13.439h

Earth’s Shadow’s Equatorial Declination = -9.06°

Earth’s Penumbral Shadow’s Diameter = 9313.92 arcseconds

Earth’s Umbral Shadow’s Diameter = 5486.4 arcseconds

Saros 131 (31 of 72), Descending Node

Eclipse Contacts

P1: 1968 Apr 13 (Sat) at 02:12:33.3 UTC

U1: 1968 Apr 13 (Sat) at 03:10:18.4 UTC

U2: 1968 Apr 13 (Sat) at 04:23:07.6 UTC

Greatest: 1968 Apr 13 (Sat) at 04:47:22.2 UTC

U3: 1968 Apr 13 (Sat) at 05:11:38.3 UTC

U4: 1968 Apr 13 (Sat) at 06:24:28.0 UTC

P4: 1968 Apr 13 (Sat) at 07:22:09.1 UTC

Eclipse Durations

The total duration of the eclipse was 5 hours, 9 minutes and 35.8 seconds.

The duration of the partial phases was 2 hours, 25 minutes and 38.9 seconds.

The duration of totality was 48 minutes and 30.7 seconds.

Visibility

It was visible from North and South America, as well as Africa and western Europe.

Lunar eclipse from moon-1968Apr13.png

Lunar year series

Lunar eclipse series sets from 1966–1969
Descending node Ascending node
Saros Date
Viewing
Type
Chart
GammaSarosDate
Viewing
Type
Chart
Gamma
111 1966 May 4
Lunar eclipse from moon-1966May04.png
Penumbral
Lunar eclipse chart close-1966May04.png
1.05536116 1966 Oct 29
Lunar eclipse from moon-1966Oct29.png
Penumbral
Lunar eclipse chart close-1966Oct29.png
−1.05999
121 1967 Apr 24
Lunar eclipse from moon-1967Apr24.png
Total
Lunar eclipse chart close-1967Apr24.png
0.29722126 1967 Oct 18
Lunar eclipse from moon-1967Oct18.png
Total
Lunar eclipse chart close-1967Oct18.png
−0.36529
131 1968 Apr 13
Lunar eclipse from moon-1968Apr13.png
Total
Lunar eclipse chart close-1968Apr13.png
−0.41732136 1968 Oct 6
Lunar eclipse from moon-1968Oct06.png
Total
Lunar eclipse chart close-1968Oct06.png
0.36054
141 1969 Apr 2
Lunar eclipse from moon-1969Apr02.png
Penumbral
Lunar eclipse chart close-1969Apr02.png
−1.17648146 1969 Sep 25
Lunar eclipse from moon-1969Sep25.png
Penumbral
Lunar eclipse chart close-1969Sep25.png
1.06558
Last set 1965 Jun 14 Last set 1965 Dec 8
Next set 1970 Feb 21 Next set 1969 Aug 27

Saros series

It is the second total lunar eclipse of the series.

Lunar Saros series 131, has 72 lunar eclipses. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

This eclipse series began in AD 1427 with a partial eclipse at the southern edge of the Earth's shadow when the Moon was close to its descending node. Each successive Saros cycle, the Moon's orbital path is shifted northward with respect to the Earth's shadow, with the first total eclipse occurring in 1950. For the following 252 years, total eclipses occur, with the central eclipse being predicted to occur in 2078. The first partial eclipse after this is predicted to occur in the year 2220, and the final partial eclipse of the series will occur in 2707. The total lifetime of the lunar Saros series 131 is 1280 years. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Because of the ⅓ fraction of days in a Saros cycle, the visibility of each eclipse will differ for an observer at a given fixed locale. For the lunar Saros series 131, the first total eclipse of 1950 had its best visibility for viewers in Eastern Europe and the Middle East because mid-eclipse was at 20:44 UT. The following eclipse in the series occurred approximately 8 hours later in the day with mid-eclipse at 4:47 UT, and was best seen from North America and South America. The third total eclipse occurred approximately 8 hours later in the day than the second eclipse with mid-eclipse at 12:43 UT, and had its best visibility for viewers in the Western Pacific, East Asia, Australia and New Zealand. This cycle of visibility repeats from the initiation to termination of the series, with minor variations. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Lunar Saros series 131, repeating every 18 years and 11 days, has a total of 72 lunar eclipse events including 57 umbral lunar eclipses (42 partial lunar eclipses and 15 total lunar eclipses). Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

GreatestFirst
Lunar eclipse chart close-2094Jun28.png
The greatest eclipse of the series will occur on 2094 Jun 28, lasting 102 minutes. [1]
PenumbralPartialTotalCentral
1427 May 101553 July 25 1950 Apr 2 2022 May 16
Last
CentralTotalPartialPenumbral
2148 Jul 312202 Sep 32563 Apr 92707 Jul 7
1901–2100
1914 Mar 12 1932 Mar 22 1950 Apr 2
Lunar eclipse chart close-1914Mar12.png Lunar eclipse from moon-1914Mar12.png Lunar eclipse chart close-1932Mar22.png Lunar eclipse from moon-1932Mar22.png Lunar eclipse chart close-1950Apr02.png Lunar eclipse from moon-1950Apr02.png
1968 Apr 13 1986 Apr 24 2004 May 4
Lunar eclipse chart close-1968Apr13.png Lunar eclipse from moon-1968Apr13.png Lunar eclipse chart close-1986Apr24.png Lunar eclipse from moon-1986Apr24.png Lunar eclipse chart close-04may04.png Lunar eclipse from moon-2004May04.png
2022 May 16 2040 May 26 2058 Jun 6
Lunar eclipse chart close-2022may16.png Lunar eclipse from moon-2022May16.png Lunar eclipse chart close-2040May26.png Lunar eclipse from moon-2040May26.png Lunar eclipse chart close-2058Jun06.png Lunar eclipse from moon-2058Jun06.png
2076 Jun 17 2094 Jun 28
Lunar eclipse chart close-2076Jun17.png Lunar eclipse from moon-2076Jun17.png Lunar eclipse chart close-2094Jun28.png Lunar eclipse from moon-2094Jun28.png

Inex series

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 35.

Series events from 1500–2500
Descending nodeAscending nodeDescending nodeAscending node
Saros Date
Chart
SarosDate
Chart
SarosDate
Chart
SarosDate
Chart
115 1505 Feb 18
Lunar eclipse chart close-1505Feb18.png
116 1534 Jan 30
Lunar eclipse chart close-1534Jan30.png
117 1563 Jan 9 118 1591 Dec 30
119 1620 Dec 9 120 1649 Nov 19 121 1678 Oct 29 122 1707 Oct 11
123 1736 Sep 20 124 1765 Aug 30 125 1794 Aug 11 126 1823 Jul 23
127 1852 Jul 1 128 1881 Jun 12 129 1910 May 24
Lunar eclipse chart close-1910May24.png
130 1939 May 3
Lunar eclipse chart close-1939May03.png
131 1968 Apr 13
Lunar eclipse chart close-1968Apr13.png
132 1997 Mar 24
Lunar eclipse chart close-1997Mar24.png
133 2026 Mar 3
Lunar eclipse chart close-2026Mar03.png
134 2055 Feb 11
Lunar eclipse chart close-2055Feb11.png
135 2084 Jan 22
Lunar eclipse chart close-2084Jan22.png
136 2113 Jan 2 137 2141 Dec 13 138 2170 Nov 23
139 2199 Nov 2 140 2228 Oct 14 141 2257 Sep 24 142 2286 Sep 3
143 2315 Aug 16 144 2344 Jul 26 145 2373 Jul 5 146 2402 Jun 16
147 2431 May 27 148 2460 May 5
Lunar eclipse chart close-2460May05.png
149 2489 Apr 16
Lunar eclipse chart close-2489Apr16.png

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [2] This lunar eclipse is related to two annular solar eclipses of Solar Saros 138.

April 8, 1959 April 18, 1977
SE1959Apr08A.png SE1977Apr18A.png

See also

Notes

  1. Listing of Eclipses of cycle 131
  2. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Related Research Articles

<span class="mw-page-title-main">March 2007 lunar eclipse</span> Total lunar eclipse of 3 March 2007

A total lunar eclipse took place on 3 March 2007, the first of two eclipses in 2007. The moon entered the penumbral shadow at 20:18 UTC, and the umbral shadow at 21:30 UTC. The total phase lasted between 22:44 UTC and 23:58 UTC with a distinctive brick-red shade. The moon left the umbra shadow at 01:11 UTC and left the penumbra shadow at 02:24 UTC 2007-03-04. The second lunar eclipse of 2007 occurred on 28 August.

<span class="mw-page-title-main">February 2008 lunar eclipse</span> Total lunar eclipse of 20 February 2008

A total lunar eclipse occurred on February 20 and February 21, 2008. It was visible in the eastern evening sky on February 20 for all of North and South America, and on February 21 in the predawn western sky from most of Africa and Europe. Greatest Eclipse occurring on Thursday, February 21, 2008, at 03:26:03 UTC, totality lasting 49 minutes and 45.6 seconds.

<span class="mw-page-title-main">May 2004 lunar eclipse</span> Total lunar eclipse May 4, 2004

A total lunar eclipse took place on May 4, 2004, the first of two total lunar eclipses in 2004, the second being on October 28, 2004.

<span class="mw-page-title-main">October 2014 lunar eclipse</span> Partial lunar eclipse of 8 October 2014

A total lunar eclipse took place on Wednesday 8 October 2014. It is the second of two total lunar eclipses in 2014, and the second in a tetrad. Other eclipses in the tetrad are those of 15 April 2014, 4 April 2015, and 28 September 2015. Occurring only 2.1 days after perigee, the Moon's apparent diameter was larger, 1960.6 arcseconds.

<span class="mw-page-title-main">May 2040 lunar eclipse</span> 2040 astronomical phenomenon

A total lunar eclipse will take place on May 26, 2040. The northern limb of the moon will pass through the center of the Earth's shadow. This is the second central lunar eclipse of Saros series 131.

<span class="mw-page-title-main">May 2022 lunar eclipse</span> Total lunar eclipse of 15–16 May 2022

A total lunar eclipse occurred on 15–16 May 2022, the first of two total lunar eclipses in 2022. The event occurred near lunar perigee; as a result, this event was referred to some in media coverage as a "super flower blood moon" and elsewhere as a "super blood moon", a supermoon that coincides with a total lunar eclipse. This was the longest total lunar eclipse visible from nearly all of North America since August 17, 1989 until the next eclipse on November 8.

A total lunar eclipse took place on Friday, August 6, 1971, the second of two total lunar eclipses in 1971. A dramatic total eclipse lasting 1 hour, 39 minutes and 24.8 seconds plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours, 35 minutes and 31.9 seconds in total. Occurring only 2.2 days before perigee, the Moon's apparent diameter was 3.6% larger than average and the moon passed through the center of the Earth's shadow.

A total lunar eclipse took place on Thursday, April 24, 1986, the first of two total lunar eclipses in 1986, the second being on October 17, 1986. The Moon was plunged into darkness for 1 hour, 3 minutes and 34.8 seconds, in a deep total eclipse which saw the Moon 20.217% of its diameter inside the Earth's umbral shadow. The visual effect of this depends on the state of the Earth's atmosphere, but the Moon may have been stained a deep red colour. The partial eclipse lasted for 3 hours, 18 minutes and 46.8 seconds in total. The Moon was just 1.2 days before perigee, making it 5.3% larger than average.

A penumbral lunar eclipse took place on Tuesday, January 20, 1981, the first of two lunar eclipses in 1981. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours and 24 minutes in all, though for most of it, the eclipse was extremely difficult or impossible to see. The moon's apparent diameter was larger because the eclipse occurred 5.2 days after perigee.

<span class="mw-page-title-main">January 2019 lunar eclipse</span> Total lunar eclipse of 21 January 2019

A total lunar eclipse occurred on 21 January 2019 UTC. For observers in the Americas, the eclipse took place between the evening of Sunday, 20 January and the early morning hours of Monday, 21 January. For observers in Europe and Africa, the eclipse occurred during the morning of 21 January. The Moon was near its perigee on 21 January and as such can be described as a "supermoon".

<span class="mw-page-title-main">April 1950 lunar eclipse</span> Total lunar eclipse April 2, 1950

A total lunar eclipse took place on Sunday, April 2, 1950. This was the first total lunar eclipse of Saros cycle 131.

<span class="mw-page-title-main">June 2058 lunar eclipse</span>

A total lunar eclipse will take place on June 6, 2058. The moon will pass through the center of the Earth's shadow.

<span class="mw-page-title-main">June 2076 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on June 17, 2076. The moon will pass through the center of the Earth's shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. With a gamma value of only −0.0452 and an umbral eclipse magnitude of 1.7943, this is the second greatest eclipse in Saros series 131 as well as the largest and darkest lunar eclipse between June 26, 2029 and June 28, 2094. Overall, it will be the third largest and darkest lunar eclipse of the 21st century. While it will have similar values to the lunar eclipse of July 16, 2000, totality will not last over 106 minutes due to the moon's relatively large apparent size as seen from Earth and greater speed in its elliptical orbit. Totality's expected to last 100 minutes 34 seconds from 9:11:39 to 10:52:15 with the greatest point at 10:01:57 UTC.

<span class="mw-page-title-main">June 2094 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on June 28, 2094. The moon will pass through the center of the Earth's shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. With a gamma value of only 0.0288 and an umbral eclipse magnitude of 1.8234, this is the greatest eclipse in Saros series 131 as well as the second largest and darkest lunar eclipse of the 21st century.

<span class="mw-page-title-main">March 1932 lunar eclipse</span> Partial lunar eclipse of March 1932

A partial lunar eclipse took place on Tuesday, March 22, 1932. It was the first of 2 nearly total eclipses. The second lunar eclipse of such happened on September 14. This lunar eclipse of Saros cycle 131 preceded the first total eclipse on April 2, 1950.

A partial lunar eclipse took place on Thursday, March 12, 1914.

<span class="mw-page-title-main">Solar eclipse of November 13, 2012</span> 21st-century total solar eclipse

A total solar eclipse took place on 13–14 November 2012 (UTC). Because it crossed the International Date Line it began in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. Its greatest magnitude was 1.0500, occurring only 12 hours before perigee, with greatest eclipse totality lasting just over four minutes. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 21st-century annular solar eclipse

An annular solar eclipse took place on February 26, 2017. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on December 14, 1955. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 8, 1956</span> 20th-century total solar eclipse

A total solar eclipse occurred on June 8–9, 1956. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It began near sunrise over New Zealand on June 9 (Saturday), and ended west of South America on June 8 (Friday).