Total lunar eclipse August 7, 2036 | |
---|---|
Ecliptic north up The Moon will pass through the center of the Earth's shadow. | |
Saros (and member) | 129 (39 of 71) |
Gamma | 0.2004 |
Magnitude | 1.4544 |
Duration (hr:mn:sc) | |
Totality | 1:35:22 |
Partial | 3:51:17 |
Penumbral | 6:12:06 |
Contacts (UTC) | |
P1 | 23:46:29 |
U1 | 0:56:53 |
U2 | 2:04:53 |
Greatest | 2:52:32 |
U3 | 3:40:11 |
U4 | 4:48:11 |
P4 | 5:58:35 |
A total lunar eclipse will take place on August 7, 2036. The southern tip of the Moon will pass through the center of the Earth's shadow. This is the last central lunar eclipse of Saros cycle 129.
This is the second eclipse this season.
First eclipse this season: Partial solar eclipse of July 23, 2036
Third eclipse this season: Partial solar eclipse of August 21, 2036
It will be completely visible over South America, seen as rising over North America, and setting over Africa and Europe.
Ascending node | Descending node | |||||
---|---|---|---|---|---|---|
Saros | Date Viewing | Type Chart | Saros | Date Viewing | Type Chart | |
114 | 2035 Feb 22 | Penumbral | 119 | 2035 Aug 19 | Partial | |
124 | 2036 Feb 11 | Total | 129 | 2036 Aug 07 | Total | |
134 | 2037 Jan 31 | Total | 139 | 2037 Jul 27 | Partial | |
144 | 2038 Jan 21 | Penumbral | 149 | 2038 Jul 16 | Penumbral | |
Last set | 2034 Apr 03 | Last set | 2034 Sep 28 | |||
Next set | 2038 Jun 17 | Next set | 2038 Dec 11 |
Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The longest occurrence of this series was on July 16, 2000 when totality lasted 106 minutes and 24.6 seconds.
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes. | Penumbral | Partial | Total | Central |
1351 Jun 10 | 1513 Sep 15 | 1910 May 24 | 1946 Jun 14 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2036 Aug 7 | 2090 Sep 8 | 2469 Apr 26 | 2613 Jul 24 |
1910 May 24 | 1928 Jun 3 | 1946 Jun 14 | |||
1964 Jun 25 | 1982 Jul 6 | 2000 Jul 16 | |||
2018 Jul 27 | 2036 Aug 7 | 2054 Aug 18 | |||
2072 Aug 28 | 2090 Sep 8 | ||||
It last occurred on July 27, 2018 and will next occur on August 18, 2054.
This is the 39th member of Lunar Saros 129. The previous event was the July 2018 lunar eclipse. The next event is the August 2054 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [1] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.
August 2, 2027 | August 12, 2045 |
---|---|
A total lunar eclipse took place on October 27–28, 2004, the second of two total lunar eclipses in 2004, the first being on May 4, 2004. It was the first lunar eclipse to take place during a World Series game, which when seen from Busch Memorial Stadium in St, Louis, Missouri, provided a surreal sight on the night the Boston Red Sox won their first World Series in 86 years to end the Curse of the Bambino. Occurring 5.6 days before apogee, the Moon's apparent diameter was smaller. The moon was 10.1 days after perigee and 5.6 days before apogee.
A total lunar eclipse will take place on Sunday, December 31, 2028. It will occur during a blue moon and is the first such eclipse to happen on New Year's Eve and New Year's Day since December 2009, and the first total lunar eclipse on New Year's Day in history. The next such eclipse will be on December 2047.
A total lunar eclipse took place on Sunday 16 July 2000, the second of two total lunar eclipses in 2000.
A total lunar eclipse will take place between Monday and Tuesday, June 25-26, 2029. A central total eclipse lasting 1 hour and 41 minutes 53 seconds will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. It will be able to be seen from most of the Americas, Western Europe and Africa. The partial eclipse will last for 3 hours and 39 minutes 32 seconds in total.
A total lunar eclipse occurred at the Moon's descending node on 27 July 2018. The Moon passed through the center of Earth's shadow in what was the first central lunar eclipse since 15 June 2011. It was also the second total lunar eclipse in 2018, after the one on 31 January. It was the longest total lunar eclipse of the 21st century, but not the longest in the 3rd millennium. The longest total lunar eclipse of the 3rd millennium will occur on May 12, 2264, lasting 106 minutes and 13.2 seconds, which will be the longest total lunar eclipse since 2000, and the longest one until 3107.
A total lunar eclipse took place on Tuesday, July 6, 1982, the second of three total lunar eclipses in 1982, and the only one that was in the descending node. A dramatic total eclipse lasting 1 hour and 46 minutes plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours and 56 minutes in total.
A total lunar eclipse took place on Thursday, June 25, 1964. The Moon passed through the center of the Earth's shadow.
A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, May 24, 1910 with an umbral eclipse magnitude of 1.09503. A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and its shadow covers the Moon. Eclipse watchers can see the Moon turn red when the eclipse reaches totality. Total eclipses of the Moon happen at Full Moon when the Sun, Earth, and Moon are aligned to form a line. The astronomical term for this type of alignment is syzygy, which comes from the Greek word for being paired together. The Moon does not have its own light but shines because its surface reflects the Sun's rays. During a total lunar eclipse, the Earth comes between the Sun and the Moon and blocks any direct sunlight from reaching the Moon. The Sun casts the Earth's shadow on the Moon's surface. A shallow total eclipse saw the Moon in relative darkness for 49 minutes and 29.5 seconds. The Moon was 9.503% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 35 minutes and 22.9 seconds in total.
A total lunar eclipse took place on Sunday, June 3, 1928.
A total lunar eclipse took place on Friday, June 14, 1946. The northern tip of the moon passed through the center of the Earth's shadow. This was the first central lunar eclipse of Saros series 129.
A total lunar eclipse will take place on August 18, 2054.
A total lunar eclipse will take place on August 28, 2072.
A total lunar eclipse will take place on September 8, 2090.
An annular solar eclipse will occur on Monday, May 31, 2049. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur on July 2, 2038. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur on July 13, 2037. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will pass through the centre of Brisbane and the Gold Coast.
A total solar eclipse will occur on December 15, 2039. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
Saros cycle series 136 for solar eclipses occurs at the Moon's descending node, repeating every 18 years, 11 days, containing 71 events. All eclipses in this series occurs at the Moon's descending node.
Saros cycle series 129 for lunar eclipses occurs at the moon's descending node, repeats every 18 years 11+1/3 days. The 129th lunar saros is associated with Solar Saros 136.
A partial lunar eclipse will take place on August 7, 2055. It will last 3 hours, 23 minutes, and 23 seconds. It will be the last of the first set of partial eclipses in Lunar Saros 139.