June 1946 lunar eclipse

Last updated
Lunar eclipse chart close-1946Jun14.png

A total lunar eclipse took place on Friday, June 14, 1946. The northern tip of the moon passed through the center of the Earth's shadow. This was the first central lunar eclipse of Saros series 129.

Contents

Visibility

It was completely visible over South America, Europe, Africa, Asia, Australia, seen rising over South America, Europe and Africa and setting over Asia and Australia.

Lunar eclipse from moon-1946Jun14.png

Lunar year series

Lunar eclipse series sets from 1944–1947
Descending node Ascending node
Saros Date
Viewing
Type
Chart
SarosDate
Viewing
Type
Chart
109 1944 Jul 06
Lunar eclipse from moon-1944Jul06.png
Penumbral
Lunar eclipse chart close-1944Jul06.png
114 1944 Dec 29
Lunar eclipse from moon-1944Dec29.png
Penumbral
Lunar eclipse chart close-1944Dec29.png
119 1945 Jun 25
Lunar eclipse from moon-1945Jun25.png
Partial
Lunar eclipse chart close-1945Jun25.png
124 1945 Dec 19
Lunar eclipse from moon-1945Dec19.png
Total
Lunar eclipse chart close-1945Dec19.png
129 1946 Jun 14
Lunar eclipse from moon-1946Jun14.png
Total
Lunar eclipse chart close-1946Jun14.png
134 1946 Dec 08
Lunar eclipse from moon-1946Dec08.png
Total
Lunar eclipse chart close-1946Dec08.png
139 1947 Jun 03
Lunar eclipse from moon-1947Jun03.png
Partial
Lunar eclipse chart close-1947Jun03.png
144 1947 Nov 28
Lunar eclipse from moon-1947Nov28.png
Penumbral
Lunar eclipse chart close-1947Nov28.png

Saros series

Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The longest occurrence of this series was on July 16, 2000 when totality lasted 106 minutes and 24.6 seconds.

GreatestFirst
Lunar eclipse chart close-2000jul16.png
The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes.
PenumbralPartialTotalCentral
1351 Jun 101513 Sep 15 1910 May 24 1946 Jun 14
Last
CentralTotalPartialPenumbral
2036 Aug 7 2090 Sep 8 2469 Apr 262613 Jul 24
1901–2100
1910 May 24 1928 Jun 3 1946 Jun 14
Lunar eclipse chart close-1910May24.png Lunar eclipse from moon-1910May24.png Lunar eclipse chart close-1928Jun03.png Lunar eclipse from moon-1928Jun03.png Lunar eclipse chart close-1946Jun14.png Lunar eclipse from moon-1946Jun14.png
1964 Jun 25 1982 Jul 6 2000 Jul 16
Lunar eclipse chart close-1964Jun25.png Lunar eclipse from moon-1964Jun25.png Lunar eclipse chart close-1982Jul06.png Lunar eclipse from moon-1982Jul06.png Lunar eclipse chart close-2000jul16.png Lunar eclipse from moon-2000Jul16.png
2018 Jul 27 2036 Aug 7 2054 Aug 18
Lunar eclipse chart close-2018Jul27.png Lunar eclipse from moon-2018Jul27.png Lunar eclipse chart close-2036Aug07.png Lunar eclipse from moon-2036Aug07.png Lunar eclipse chart close-2054Aug18.png Lunar eclipse from moon-2054Aug18.png
2072 Aug 28 2090 Sep 8
Lunar eclipse chart close-2072Aug28.png Lunar eclipse from moon-2072Aug28.png Lunar eclipse chart close-2090Sep08.png Lunar eclipse from moon-2090Sep08.png

It last occurred on June 3, 1928 and will next occur on June 25, 1964.

This is the 34th member of Lunar Saros 129. The previous event was the June 1928 lunar eclipse. The next event is the June 1964 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [1] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.

June 8, 1937 June 20, 1955
SE1937Jun08T.png SE1955Jun20T.png

See also

Notes

  1. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Related Research Articles

<span class="mw-page-title-main">August 2007 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse occurred on 28 August 2007, lasting just over 90 minutes. The Moon entered the Earth's penumbra at 7:53:40 UTC. The first partial phase began in earnest at 8:51:16 UTC when the Moon entered the Earth's umbra. It exited the penumbra at 13:20:57 UTC.

<span class="mw-page-title-main">November 2003 lunar eclipse</span> Total lunar eclipse

A total lunar eclipse took place on Sunday, November 9, 2003, the second of two total lunar eclipses in 2003, the first being on May 16, 2003. It is the first total lunar eclipse of 21st century which happened on a micromoon day. The Moon barely edged into total eclipse for 21 minutes and 58 seconds. With the Moon just 1.78% of its diameter into the Earth's umbral shadow, the Moon may have been quite bright, but even so, this should have been worth seeing. The partial eclipse lasted for 3 hours, 31 minutes and 25 seconds. Occurring only 1.4 days before apogee, the Moon's apparent diameter was 6.4% smaller than average.

<span class="mw-page-title-main">July 2000 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse took place on Sunday 16 July 2000, the second of two total lunar eclipses in 2000.

<span class="mw-page-title-main">August 2036 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on August 7, 2036. The southern tip of the moon will pass through the center of the Earth's shadow. This is the last central lunar eclipse of Saros cycle 129.

<span class="mw-page-title-main">July 2018 lunar eclipse</span> Central lunar eclipse on 27 July 2018

A total lunar eclipse occurred at the Moon's descending node on 27 July 2018. The Moon passed through the center of Earth's shadow in what was the first central lunar eclipse since 15 June 2011. It was also the second total lunar eclipse in 2018, after the one on 31 January. It was the longest total lunar eclipse of the 21st century, but not the longest in the 3rd millennium. The longest total lunar eclipse of the 3rd millennium will occur on May 12, 2264, lasting 106 minutes and 13.2 seconds, which will be the longest total lunar eclipse since 2000, and the longest one until 3107.

A total lunar eclipse took place on Tuesday, July 6, 1982, the second of three total lunar eclipses in 1982, and the only one that was in the descending node. A dramatic total eclipse lasting 1 hour and 46 minutes plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours and 56 minutes in total.

A total lunar eclipse took place on Friday, August 6, 1971, the second of two total lunar eclipses in 1971. A dramatic total eclipse lasting 1 hour, 39 minutes and 24.8 seconds plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours, 35 minutes and 31.9 seconds in total. Occurring only 2.2 days before perigee, the Moon's apparent diameter was 3.6% larger than average and the moon passed through the center of the Earth's shadow.

<span class="mw-page-title-main">June 1964 lunar eclipse</span> Total lunar eclipse June 25, 1964

A total lunar eclipse took place on Thursday, June 25, 1964. The moon passed through the center of the Earth's shadow.

A total lunar eclipse took place on Thursday, April 24, 1986, the first of two total lunar eclipses in 1986, the second being on October 17, 1986. The Moon was plunged into darkness for 1 hour, 3 minutes and 34.8 seconds, in a deep total eclipse which saw the Moon 20.217% of its diameter inside the Earth's umbral shadow. The visual effect of this depends on the state of the Earth's atmosphere, but the Moon may have been stained a deep red colour. The partial eclipse lasted for 3 hours, 18 minutes and 46.8 seconds in total. The Moon was just 1.2 days before perigee, making it 5.3% larger than average.

<span class="mw-page-title-main">September 2025 lunar eclipse</span> Total lunar eclipse of September 2025.

A total lunar eclipse will take place between Sunday, September 7 and Monday, September 8, 2025. The Moon will barely miss the center of the Earth's shadow. It will be the second of two total lunar eclipses. Occurring roughly 3 days before perigee, the Moon will appear larger than usual.

A total lunar eclipse took place on Saturday, September 16, 1978, the second of two total lunar eclipses in 1978. The Moon was plunged into darkness for 1 hour, 18 minutes and 39 seconds, in a deep total eclipse which saw the Moon 32.683% of its diameter inside the Earth's umbral shadow. The visual effect of this depends on the state of the Earth's atmosphere, but the Moon may have been stained a deep red colour. The partial eclipse lasted for 3 hours, 27 minutes and 11.6 seconds in total.

<span class="mw-page-title-main">May 1966 lunar eclipse</span> Penumbral lunar eclipse May 4, 1966

A penumbral lunar eclipse took place on Wednesday, May 4, 1966, the first of two penumbral lunar eclipses in 1966. It was visible from South America, Europe, Africa, Asia, Australia and Antarctica.

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, May 24, 1910 with an umbral eclipse magnitude of 1.09503. A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and its shadow covers the Moon. Eclipse watchers can see the Moon turn red when the eclipse reaches totality. Total eclipses of the Moon happen at Full Moon when the Sun, Earth, and Moon are aligned to form a line. The astronomical term for this type of alignment is syzygy, which comes from the Greek word for being paired together. The Moon does not have its own light but shines because its surface reflects the Sun's rays. During a total lunar eclipse, the Earth comes between the Sun and the Moon and blocks any direct sunlight from reaching the Moon. The Sun casts the Earth's shadow on the Moon's surface. A shallow total eclipse saw the Moon in relative darkness for 49 minutes and 29.5 seconds. The Moon was 9.503% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 35 minutes and 22.9 seconds in total.

<span class="mw-page-title-main">June 1928 lunar eclipse</span> Total lunar eclipse June 3, 1928

A total lunar eclipse took place on Sunday, June 3, 1928.

<span class="mw-page-title-main">August 2054 lunar eclipse</span>

A total lunar eclipse will take place on August 18, 2054.

<span class="mw-page-title-main">August 2072 lunar eclipse</span>

A total lunar eclipse will take place on August 28, 2072.

<span class="mw-page-title-main">September 2090 lunar eclipse</span>

A total lunar eclipse will take place on September 8, 2090.

<span class="mw-page-title-main">Solar Saros 136</span> Saros cycle series 136 for solar eclipses

Saros cycle series 136 for solar eclipses occurs at the Moon's descending node, repeating every 18 years, 11 days, containing 71 events. All eclipses in this series occurs at the Moon's descending node.

<span class="mw-page-title-main">Solar Saros 139</span> Saros cycle series 139 for solar eclipses

Saros cycle series 139 for solar eclipses occurs at the Moon's ascending node, repeating every 18 years, 11 days, containing 71 events. It has 16 partial solar eclipses, 12 will be hybrid and 43 will be total. The first total eclipse occurred on December 21, 1843 over southern Asia and lasted 1 minute and 43 seconds. The last total eclipse will occur on March 26, 2601 over Antarctica and the Southern Ocean lasting 35 seconds.

<span class="mw-page-title-main">Lunar Saros 129</span>

Saros cycle series 129 for lunar eclipses occurs at the moon's descending node, repeats every 18 years 11+1/3 days. The 129th lunar saros is associated with Solar Saros 136.