March 2006 lunar eclipse

Last updated

Penumbral lunar eclipse
14-15 March 2006
Lunar eclipse (114948858).jpg
From Trondheim, Norway at 23:49 UTC
Lunar eclipse chart close-06mar14.png
The Moon passed right to left through the Earth's northern penumbral shadow.
Series (and member) 113 (63 of 71)
Gamma 1.0210
Magnitude 1.0301
Duration (hr:mn:sc)
Penumbral4:47:27
Contacts (UTC)
P121:23:45
Greatest23:47:29
P42:11:12 (15 Mar)
Lunar eclipse chart-2006Mar14.png
The Moon's hourly motion across the Earth's shadow in the constellation of Virgo.

A penumbral lunar eclipse took place on 14 March 2006, the first of two lunar eclipses in 2006.

Contents

This was a relatively rare total penumbral lunar eclipse with the Moon passing entirely within the penumbral shadow without entering the darker umbral shadow. The tables below contain detailed predictions and additional information on the Penumbral Lunar Eclipse of 14 March 2006.

Visibility

It was completely visible over Africa and Europe, seen rising over eastern North America, all of South America, and setting over western Asia.

NASA chart of the eclipse 2006-03-14 Lunar Eclipse Sketch.png
NASA chart of the eclipse

Lunar eclipse from moon-2006Mar14.png
A simulated view of the Earth from the center of the Moon at maximum eclipse.

Map

Visibility Lunar Eclipse 2006-03-14.png

Relation to other lunar eclipses

Eclipses of 2006

Lunar year series (354 days)

Lunar eclipse series sets from 2006–2009
Descending node Ascending node
Saros #
and photo
Date
Viewing
Type
Chart
GammaSaros #
and photo
Date
Viewing
Type
Chart
Gamma
113
Lunar eclipse (114948858).jpg
2006 Mar 14
Lunar eclipse from moon-2006Mar14.png
penumbral
Lunar eclipse chart close-06mar14.png
1.0211118
Partial lunar eclipse Sept 7 2006-Mikelens.jpg
2006 Sep 7
Lunar eclipse from moon-2006Sep07.png
partial
Lunar eclipse chart close-2006Sep07.png
−0.9262
123
Total eclipse.jpg
2007 Mar 03
Lunar eclipse from moon-2007Mar03.png
total
Lunar eclipse chart close-07mar03.png
0.3175128
Lunar Eclipse.jpg
2007 Aug 28
Lunar eclipse from moon-2007Aug28.png
total
Lunar eclipse chart close-2007aug28.png
−0.2146
133
February 2008 total lunar eclipse John Buonomo.jpg
2008 Feb 21
Lunar eclipse from moon-2008Feb21.png
total
Lunar eclipse chart close-08feb20.png
−0.3992138
20080816eclipsed2.jpg
2008 Aug 16
Lunar eclipse from moon-2008Aug16.png
partial
Lunar eclipse chart close-2008Aug16.png
0.5646
143
Penumbral lunar eclipse Feb 9 2009 NavneethC.jpg
2009 Feb 09
Lunar eclipse from moon-2009Feb09.png
penumbral
Lunar eclipse chart close-09feb09.png
−1.0640148
Penumbral lunar eclipse Aug 6 2009 John Walker.gif
2009 Aug 06
Lunar eclipse from moon-2009Aug06.png
penumbral
Lunar eclipse chart close-2009aug06.png
1.3572
Last set 2005 Apr 24 Last set 2005 Oct 17
Next set 2009 Dec 31 Next set 2009 Jul 07

Saros series

The eclipse belongs to Saros series 113, and is the 63rd of 71 lunar eclipses in the series. The first penumbral eclipse of saros cycle 113 began on 29 April 888 AD, first partial eclipse on 14 July 1014, and total first was on 20 March 1429. The last total eclipse occurred on 7 August 1645, last partial on 21 February 1970, and last penumbral eclipse on 10 June 2150. [1]

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [2] This lunar eclipse is related to two total solar eclipses of Solar Saros 120.

9 March 1997 20 March 2015
SE1997Mar09T.png SE2015Mar20T.png

Metonic cycles (19 years)

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the earth's shadow will in nearly the same location relative to the background stars.

  1. 2006 Mar 14.99 - penumbral (113)
  2. 2025 Mar 14.29 - total (123)
  3. 2044 Mar 13.82 - total (133)
  4. 2063 Mar 14.67- partial (143)
  1. 2006 Sep 07.79 - partial (118)
  2. 2025 Sep 07.76 - total (128)
  3. 2044 Sep 07.47 - partial (138)
  4. 2063 Sep 07.86 - penumbral (148)
Metonic lunar eclipses 2006-2063A.png

Eclipse season

This is the first eclipse this season.

Second eclipse this season: 29 March 2006 Total Solar Eclipse

See also

Notes

  1. Hermit Eclipse: Eclipse Search
  2. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

Related Research Articles

<span class="mw-page-title-main">March 2007 lunar eclipse</span> Total lunar eclipse of 3 March 2007

A total lunar eclipse took place on 3 March 2007, the first of two eclipses in 2007. The Moon entered the penumbral shadow at 20:18 UTC, and the umbral shadow at 21:30 UTC. The total phase lasted between 22:44 UTC and 23:58 UTC with a distinctive brick-red shade. The Moon left the umbra shadow at 01:11 UTC and left the penumbra shadow at 02:24 UTC 2007-03-04. The second lunar eclipse of 2007 occurred on 28 August.

<span class="mw-page-title-main">August 2008 lunar eclipse</span> Partial lunar eclipse of 16 August 2008

A partial lunar eclipse took place on 16 August 2008, the second of two lunar eclipses in 2008, with the first being a total eclipse on 20 February 2008. The next lunar eclipse was a penumbral eclipse occurring on 9 February 2009, while the next total lunar eclipse occurred on 21 December 2010.

<span class="mw-page-title-main">November 2003 lunar eclipse</span> Total lunar eclipse

A total lunar eclipse took place on Sunday, November 9, 2003, the second of two total lunar eclipses in 2003, the first being on May 16, 2003. It is the first total lunar eclipse of 21st century which happened on a micromoon day. The Moon barely edged into total eclipse for 21 minutes and 58 seconds. With the Moon just 1.78% of its diameter into the Earth's umbral shadow, the Moon may have been quite bright, but even so, this should have been worth seeing. The partial eclipse lasted for 3 hours, 31 minutes and 25 seconds. Occurring only 1.4 days before apogee, the Moon's apparent diameter was 6.4% smaller than average.

<span class="mw-page-title-main">April 2005 lunar eclipse</span> Penumbral lunar eclipse April 24, 2005

A penumbral lunar eclipse took place on April 24, 2005, the first of two lunar eclipses in 2005. At maximum eclipse, 86.5% of the Moon's disc was partially shaded by the Earth, which caused a slight shadow gradient across its disc; this subtle effect may have been visible to careful observers. No part of the Moon was in complete shadow. The eclipse lasted 4 hours and 6 minutes overall, and was visible from east Asia, Australia, and the Americas.

<span class="mw-page-title-main">October 2005 lunar eclipse</span> Partial lunar eclipse October 17, 2005

A partial lunar eclipse took place on Monday, October 17, 2005, the second of two lunar eclipses in 2005. A tiny bite out of the Moon may have been visible at maximum, though just 6.25% of the Moon was shadowed in a partial eclipse which lasted for nearly 56 minutes and was visible over east Asia, Australasia, and most of the North America. A shading across the Moon from the Earth's penumbral shadow should have been visible at maximum eclipse.

<span class="mw-page-title-main">September 2006 lunar eclipse</span> Partial lunar eclipse 7 September 2006

A partial lunar eclipse took place on 7 September 2006, the second of two lunar eclipses in 2006. The tables below contain detailed predictions and additional information on the Partial Lunar Eclipse of 7 September 2006.

<span class="mw-page-title-main">November 2022 lunar eclipse</span> Total lunar eclipse on 8 November 2022

A total lunar eclipse occurred on Tuesday, 8 November 2022. The southern limb of the Moon passed through the center of the Earth's shadow. It surpassed the previous eclipse as the longest total lunar eclipse visible from nearly all of North America since 17 August 1989, and until 26 June 2029. Occurring only 5.8 days before apogee, the Moon's apparent diameter was smaller. The next total lunar eclipse will take place on 14 March 2025. A lunar occultation of Uranus happened during the eclipse. It was the first total lunar eclipse on Election Day in US history. This event was referred in media coverage as a "beaver blood moon".

<span class="mw-page-title-main">July 2047 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on July 7, 2047. It will last 1 hour 40 minutes and 49 seconds and will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it. The partial eclipse will last for 3 hours and 39 minutes in total.

A partial lunar eclipse took place on Saturday, August 27, 1988, the second of two lunar eclipses in 1988, the first being on March 3, 1988. The Earth's shadow on the Moon was clearly visible in this eclipse, with 29.159% of the Moon in shadow; the partial eclipse lasted for 1 hour, 52 minutes and 59.7 seconds. The Moon was only 5 hours and 48 minutes before perigee, making it 6.3% larger than average

<span class="mw-page-title-main">December 1991 lunar eclipse</span> Partial lunar eclipse in 1991

A partial lunar eclipse took place on Saturday, December 21, 1991, the last of four lunar eclipses in 1991. The moon grazed the northern edge of the umbral shadow. It occurred near perigee, and as described, such event was known as a supermoon.

A penumbral lunar eclipse took place on Thursday, March 3, 1988, the first of two lunar eclipses in 1988, the second being on August 27, 1988. Earlier sources compute this as a 0.3% partial eclipse lasting under 14 minutes, and newest calculations list it as a penumbral eclipse that never enters the umbral shadow. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours, 53 minutes and 50.6 seconds in all, though for most of it, the eclipse was extremely difficult or impossible to see. The Moon was 2.2 days after apogee, making it 6.1% smaller than average.

<span class="mw-page-title-main">June 1991 lunar eclipse</span> Penumbral lunar eclipse June 27, 1991

A penumbral lunar eclipse took place on Thursday, June 27, 1991, the second of four lunar eclipses in 1991. The moon entered the Earth's penumbra for about 3 hours, and was difficult to see. This lunar eclipse is the predecessor of the Solar eclipse of July 11, 1991.

A penumbral lunar eclipse took place on Thursday, November 8, 1984, the last of three lunar eclipses in 1984. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 90% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 4 hours and 28 minutes.

A penumbral lunar eclipse took place on Tuesday, May 15, 1984, the first of three lunar eclipses in 1984. This was a deep penumbral eclipse, with the southern limb of the Moon close to the Earth's shadow.

A penumbral lunar eclipse will take place on Monday, March 25, 2024. It will be visible to the naked eye as 95.57% of the Moon will be immersed in Earth's penumbral shadow.

<span class="mw-page-title-main">August 2026 lunar eclipse</span>

A partial lunar eclipse will take place on Friday 28 August 2026. The moon will be almost be inside the umbra, but not quite be contained within the umbral shadow at greatest eclipse.

<span class="mw-page-title-main">August 2027 lunar eclipse</span> Penumbral

A penumbral lunar eclipse will take place on Tuesday, August 17, 2027. It will cause a subtle dimming as 54.56% of the Moon will cross within Earth's penumbral shadow.

A partial lunar eclipse took place on Thursday, May 13, 1976, the first of two lunar eclipses in 1976, the second being a penumbral lunar eclipse on November 6, 1976. At maximum eclipse, a small bite out of the Moon should have been visible. The eclipse lasted for 1 hour, 15 minutes and 23.8 seconds, with just 12.17% of the Moon in shadow at maximum. Occurring only 1.1 days after perigee, the Moon's apparent diameter 5.4% larger than average.

A penumbral lunar eclipse took place on Saturday, November 6, 1976, the second of two lunar eclipses in 1976, the first being on May 13. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 83.827% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 4 hours, 25 minutes and 52.1 seconds. Occurring only 0.3 days after apogee, the Moon's apparent diameter was 6.5% smaller than average.

A partial lunar eclipse took place on Saturday, February 21, 1970. It was the first of two partial lunar eclipses in 1970, the other being on August 17 of the same year. A tiny bite out of the Moon may have been visible at maximum, though just 5% of the Moon was shadowed in a partial eclipse which lasted for 52 minutes and 42 seconds. A shading across the moon from the Earth's penumbral shadow should have been visible at maximum eclipse.