Solar eclipse of March 9, 1997

Last updated
Solar eclipse of March 9, 1997
Total solar eclipse of March 9 1997.jpg
Total eclipse from Chita, Russia
SE1997Mar09T.png
Map
Type of eclipse
NatureTotal
Gamma 0.9183
Magnitude 1.042
Maximum eclipse
Duration170 s (2 min 50 s)
Coordinates 57°48′N130°42′E / 57.8°N 130.7°E / 57.8; 130.7
Max. width of band356 km (221 mi)
Times (UTC)
Greatest eclipse1:24:51
References
Saros 120 (60 of 71)
Catalog # (SE5000) 9501

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, March 8 and Sunday, March 9, 1997, [1] with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18.5 hours after perigee (on March 8, 1997, at 9:00 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible in eastern Russia, northern Mongolia, the northern tip of Xinjiang and Northeastern China and the eastern tip of Kazakhstan. A partial eclipse was visible for parts of Southeast Asia, East Asia, Alaska, and western Canada.

Unusual gravity variations

This solar eclipse is somewhat special in the sense that some unexplained gravity anomalies of about 7 10−8 m/s2 during the solar eclipse were observed. Attempts (e.g., Van Flandern–Yang hypothesis) to explain these anomalies have not been able to reach a definite conclusion. [3]

Observations

Russia

Russian Academy of Sciences sent an observation team near Lake Baikal to study multiple aspects of the solar corona, providing complement to the imperfections of the corona observation of the Solar and Heliospheric Observatory spacecraft. [4]

China

In China, only a partial eclipse was visible from most areas. The path of totality covered only two narrow areas not adjacent to each other. In Northwestern China, it covered the northern part of Altay Prefecture, Xinjiang. In Northeast China, it covered the northern part of Hulunbuir League (now the city of Hulumbuir), Inner Mongolia and the northern part of neighbouring Daxing'anling Prefecture, Heilongjiang. Therefore, observations of the total eclipse in China are concentrated in these two areas.

In Altay Prefecture, Xinjiang, the total phase occurred right after sunrise. By observing the change in the brightness in Altay, the Xia–Shang–Zhou Chronology Project concluded that the phrase of "day dawned twice in Zheng" in the ancient chronicle Bamboo Annals referred to a solar eclipse on April 21, 899 BC which also occurred right after sunrise, thus determining the year of the Battle of Muye and the starting year of the Zhou dynasty. [5] However, doubts also exist on this conclusion. For example, Douglas J. Keenan published on the journal East Asian History , stating that calculations show that the eclipse in 899 BC reduced the brightness perceived subjectively by a human observer by less than 25%, and clouds can even cause the same effect very often, thus questioning the conclusion.

Mohe County (now Mohe City), Heilongjiang, the northernmost county in China, was considered the best observation site in China due to the high solar zenith angle and the long duration of totality. Within the county, the longest duration occurred in Mohe Township (now Beiji Township), the northernmost township in China. Comet Hale–Bopp also appeared during totality, which also attracted many Chinese to travel to this northernmost town. [6] In addition, the first amateur radio communication experiment during a total solar eclipse in mainland China, [7] and China Central Television's first live broadcast of a solar eclipse [8] were also completed there.

Images

SE1997Mar09T.gif

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [9]

March 9, 1997 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1997 March 08 at 23:17:38.3 UTC
First Umbral External Contact1997 March 09 at 00:42:04.9 UTC
First Central Line1997 March 09 at 00:44:28.2 UTC
First Umbral Internal Contact1997 March 09 at 00:46:59.1 UTC
Ecliptic Conjunction1997 March 09 at 01:15:36.8 UTC
Greatest Duration1997 March 09 at 01:24:17.2 UTC
Greatest Eclipse1997 March 09 at 01:24:50.6 UTC
Equatorial Conjunction1997 March 09 at 01:54:40.0 UTC
Last Umbral Internal Contact1997 March 09 at 02:02:20.9 UTC
Last Central Line1997 March 09 at 02:04:51.3 UTC
Last Umbral External Contact1997 March 09 at 02:07:14.0 UTC
Last Penumbral External Contact1997 March 09 at 03:31:50.3 UTC
March 9, 1997 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.04202
Eclipse Obscuration1.08580
Gamma0.91830
Sun Right Ascension23h17m46.1s
Sun Declination-04°32'29.2"
Sun Semi-Diameter16'06.5"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension23h16m38.7s
Moon Declination-03°38'59.4"
Moon Semi-Diameter16'40.8"
Moon Equatorial Horizontal Parallax1°01'12.9"
ΔT62.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March 1997
March 9
Descending node (new moon)
March 24
Ascending node (full moon)
SE1997Mar09T.png Lunar eclipse chart close-1997Mar24.png
Total solar eclipse
Solar Saros 120
Partial lunar eclipse
Lunar Saros 132

Eclipses in 1997

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 120

Inex

Triad

Solar eclipses of 1997–2000

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [10]

The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1997 to 2000
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
Total solar eclipse of March 9 1997.jpg
Totality in Chita, Russia
March 9, 1997
SE1997Mar09T.png
Total
0.9183125 September 2, 1997
SE1997Sep02P.png
Partial
−1.0352
130
Ecl002-2 (4321047401).jpg
Totality near Guadeloupe
February 26, 1998
SE1998Feb26T.png
Total
0.2391135 August 22, 1998
SE1998Aug22A.png
Annular
−0.2644
140 February 16, 1999
SE1999Feb16A.png
Annular
−0.4726145
Solar eclipse 1999 4.jpg
Totality in France
August 11, 1999
SE1999Aug11T.png
Total
0.5062
150 February 5, 2000
SE2000Feb05P.png
Partial
−1.2233155 July 31, 2000
SE2000Jul31P.png
Partial
1.2166

Saros 120

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit. [11]

Series members 50–71 occur between 1801 and 2195:
505152
SE1816Nov19T.gif
November 19, 1816
SE1834Nov30T.gif
November 30, 1834
SE1852Dec11T.gif
December 11, 1852
535455
SE1870Dec22T.gif
December 22, 1870
SE1889Jan01T.png
January 1, 1889
SE1907Jan14T.png
January 14, 1907
565758
SE1925Jan24T.png
January 24, 1925
SE1943Feb04T.png
February 4, 1943
SE1961Feb15T.png
February 15, 1961
596061
SE1979Feb26T.png
February 26, 1979
SE1997Mar09T.png
March 9, 1997
SE2015Mar20T.png
March 20, 2015
626364
SE2033Mar30T.png
March 30, 2033
SE2051Apr11P.png
April 11, 2051
SE2069Apr21P.png
April 21, 2069
656667
SE2087May02P.png
May 2, 2087
Saros120 66van71 SE2105May14P.jpg
May 14, 2105
Saros120 67van71 SE2123May25P.jpg
May 25, 2123
686970
Saros120 68van71 SE2141Jun04P.jpg
June 4, 2141
Saros120 69van71 SE2159Jun16P.jpg
June 16, 2159
Saros120 70van71 SE2177Jun26P.jpg
June 26, 2177
71
Saros120 71van71 SE2195Jul07P.jpg
July 7, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21March 9December 25–26October 13–14August 1–2
118120122124126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128130132134136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138140142144146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148150152154156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158
SE2069May20P.png
May 20, 2069

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1866 and 2200
SE1866Mar16P.gif
March 16, 1866
(Saros 108)
SE1898Dec13P.gif
December 13, 1898
(Saros 111)
SE1931Sep12P.png
September 12, 1931
(Saros 114)
SE1942Aug12P.png
August 12, 1942
(Saros 115)
SE1953Jul11P.png
July 11, 1953
(Saros 116)
SE1964Jun10P.png
June 10, 1964
(Saros 117)
SE1975May11P.png
May 11, 1975
(Saros 118)
SE1986Apr09P.png
April 9, 1986
(Saros 119)
SE1997Mar09T.png
March 9, 1997
(Saros 120)
SE2008Feb07A.png
February 7, 2008
(Saros 121)
SE2019Jan06P.png
January 6, 2019
(Saros 122)
SE2029Dec05P.png
December 5, 2029
(Saros 123)
SE2040Nov04P.png
November 4, 2040
(Saros 124)
SE2051Oct04P.png
October 4, 2051
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2073Aug03T.png
August 3, 2073
(Saros 127)
SE2084Jul03A.png
July 3, 2084
(Saros 128)
SE2095Jun02T.png
June 2, 2095
(Saros 129)
SE2106May03T.png
May 3, 2106
(Saros 130)
SE2117Apr02A.png
April 2, 2117
(Saros 131)
SE2128Mar01A.png
March 1, 2128
(Saros 132)
SE2139Jan30T.png
January 30, 2139
(Saros 133)
SE2149Dec30A.png
December 30, 2149
(Saros 134)
SE2160Nov27A.png
November 27, 2160
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)
SE2193Aug26A.png
August 26, 2193
(Saros 138)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1823Jul08P.gif
July 8, 1823
(Saros 114)
SE1852Jun17P.gif
June 17, 1852
(Saros 115)
SE1881May27P.gif
May 27, 1881
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1968Mar28P.png
March 28, 1968
(Saros 119)
SE1997Mar09T.png
March 9, 1997
(Saros 120)
SE2026Feb17A.png
February 17, 2026
(Saros 121)
SE2055Jan27P.png
January 27, 2055
(Saros 122)
SE2084Jan07P.png
January 7, 2084
(Saros 123)
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
(Saros 124)
Saros125 61van73 SE2141Nov28P.jpg
November 28, 2141
(Saros 125)
Saros126 56van72 SE2170Nov08P.jpg
November 8, 2170
(Saros 126)
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199
(Saros 127)

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2034</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 16, 1980</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, February 16, 1980, with a magnitude of 1.0434. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 30, 2033</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 11 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, August 23 and Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 hours before perigee, the Moon's apparent diameter will be larger. Perigee did occur near the very end of this eclipse.

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 18, 1988</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 19, 1958</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, April 19, 1958, with a magnitude of 0.9408. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.2 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 24, 1995</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 24, 1995, with a magnitude of 1.0213. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 22, 1968</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 4, 1943</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 22 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 19, 1816</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, November 19, 1816, with a magnitude of 1.0233. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 26, 1824</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 26 and Sunday, June 27, 1824, with a magnitude of 1.0578. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee, the Moon's apparent diameter was larger.

References

  1. "March 8–9, 1997 Total Solar Eclipse". timeanddate. Retrieved 10 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 10 August 2024.
  3. Wang, Qian-shen; Yang, Xin-she; Wu, Chuan-zhen; Guo, Hong-gang; Liu, Hong-chen; Hua, Chang-chai (2000-07-14). "Precise measurement of gravity variations during a total solar eclipse". Physical Review D. 62 (4): 041101(R). arXiv: 1003.4947 . Bibcode:2000PhRvD..62d1101W. doi:10.1103/physrevd.62.041101. ISSN   0556-2821. S2CID   6846335.
  4. "TOTAL SOLAR ECLIPSE OF MARCH 9, 1997 IN THE BAIKAL REGION, EAST SIBIRIA". IZMIRAN. Archived from the original on 2 October 2011.
  5. "一九九七年"夏商周断代工程"研究" (in Chinese). Guangming Online. 20 March 1998. Archived from the original on 2 April 2015.
  6. "1997年漠河日全食观测散记:雪原黑昼_科学探索_科技时代_新浪网". tech.sina.com.cn (in Chinese). Archived from the original on 2 April 2015.
  7. Qian Ruhu (1997). "收听漠河日全食——首次业余电台日全食通信试验追记". 天文爱好者 (journal) (in Chinese) (06).
  8. "《新闻调查》 19970314 寻踪日全食_新闻调查_视频_央视网". China Central Television (in Chinese). Archived from the original on 10 July 2015.
  9. "Total Solar Eclipse of 1997 Mar 09". EclipseWise.com. Retrieved 10 August 2024.
  10. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  11. "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.

Photos: