Solar eclipse of August 24, 2082

Last updated
Solar eclipse of August 24, 2082
SE2082Aug24T.png
Map
Type of eclipse
NatureTotal
Gamma −0.4004
Magnitude 1.0452
Maximum eclipse
Duration241 s (4 min 1 s)
Coordinates 10°18′S151°48′E / 10.3°S 151.8°E / -10.3; 151.8
Max. width of band163 km (101 mi)
Times (UTC)
Greatest eclipse1:16:21
References
Saros 146 (31 of 76)
Catalog # (SE5000) 9692

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Contents

Eclipses in 2082

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 146

Inex

Triad

Solar eclipses of 2080–2083

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The partial solar eclipse on July 15, 2083 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2080 to 2083
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 March 21, 2080
SE2080Mar21P.png
Partial
−1.0578126 September 13, 2080
SE2080Sep13P.png
Partial
1.0723
131 March 10, 2081
SE2081Mar10A.png
Annular
−0.3653136 September 3, 2081
SE2081Sep03T.png
Total
0.3378
141 February 27, 2082
SE2082Feb27A.png
Annular
0.3361146 August 24, 2082
SE2082Aug24T.png
Total
−0.4004
151 February 16, 2083
SE2083Feb16P.png
Partial
1.017156 August 13, 2083
SE2083Aug13P.png
Partial
−1.2064

Saros 146

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit. [2]

Series members 16–37 occur between 1801 and 2200:
161718
SE1801Apr13P.png
March 13, 1812
SE1819Apr24P.png
March 24, 1830
SE1837May04P.png
April 3, 1848
192021
SE1855May16P.png
April 15, 1866
SE1873May26P.png
April 25, 1884
SE1902May07P.png
May 7, 1902
222324
SE1920May18P.png
May 18, 1920
SE1938May29T.png
May 29, 1938
SE1956Jun08T.png
June 8, 1956
252627
SE1974Jun20T.png
June 20, 1974
SE1992Jun30T.png
June 30, 1992
SE2010Jul11T.png
July 11, 2010
282930
SE2028Jul22T.png
July 22, 2028
SE2046Aug02T.png
August 2, 2046
SE2064Aug12T.png
August 12, 2064
313233
SE2082Aug24T.png
August 24, 2082
SE2100Sep04T.png
September 4, 2100
SE2118Sep15T.png
September 15, 2118
343536
SE2136Sep26T.png
September 26, 2136
SE2154Oct07T.png
October 7, 2154
SE2172Oct17H.png
October 17, 2172
37
SE2190Oct29H.png
October 29, 2190

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1820Sep07A.png
September 7, 1820
(Saros 122)
SE1831Aug07T.gif
August 7, 1831
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1875Apr06T.png
April 6, 1875
(Saros 127)
SE1886Mar05A.gif
March 5, 1886
(Saros 128)
SE1897Feb01A.gif
February 1, 1897
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1929Nov01A.png
November 1, 1929
(Saros 132)
SE1940Oct01T.png
October 1, 1940
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1962Jul31A.png
July 31, 1962
(Saros 135)
SE1973Jun30T.png
June 30, 1973
(Saros 136)
SE1984May30A.png
May 30, 1984
(Saros 137)
SE1995Apr29A.png
April 29, 1995
(Saros 138)
SE2006Mar29T.png
March 29, 2006
(Saros 139)
SE2017Feb26A.png
February 26, 2017
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2049Nov25H.png
November 25, 2049
(Saros 143)
SE2060Oct24A.png
October 24, 2060
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2082Aug24T.png
August 24, 2082
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
SE2104Jun22T.png
June 22, 2104
(Saros 148)
SE2115May24T.png
May 24, 2115
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
(Saros 151)
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
(Saros 154)
Saros155 15van71 SE2180Nov17T.jpg
November 17, 2180
(Saros 155)
Saros156 11van69 SE2191Oct18A.jpg
October 18, 2191
(Saros 156)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12March 30–31January 16November 4–5August 23–24
118120122124126
SE2029Jun12P.png
June 12, 2029
SE2033Mar30T.png
March 30, 2033
SE2037Jan16P.png
January 16, 2037
SE2040Nov04P.png
November 4, 2040
SE2044Aug23T.png
August 23, 2044
128130132134136
SE2048Jun11A.png
June 11, 2048
SE2052Mar30T.png
March 30, 2052
SE2056Jan16A.png
January 16, 2056
SE2059Nov05A.png
November 5, 2059
SE2063Aug24T.png
August 24, 2063
138140142144146
SE2067Jun11A.png
June 11, 2067
SE2071Mar31A.png
March 31, 2071
SE2075Jan16T.png
January 16, 2075
SE2078Nov04A.png
November 4, 2078
SE2082Aug24T.png
August 24, 2082
148150152154156
SE2086Jun11T.png
June 11, 2086
SE2090Mar31P.png
March 31, 2090
SE2094Jan16T.png
January 16, 2094
SE2097Nov04A.png
November 4, 2097
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
158160162164
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
Saros164 02van80 SE2116Nov04P.jpg
November 4, 2116

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of July 22, 2028</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, July 22, 2028, with a magnitude of 1.056. The central line of the path of the eclipse will cross the Australian continent from the Kimberley region in the north-west and continue in a south-easterly direction through Western Australia, the Northern Territory, south-west Queensland and New South Wales, close to the towns of Wyndham, Kununurra, Tennant Creek, Birdsville, Bourke and Dubbo, and continuing on through the centre of Sydney, where the eclipse will have a duration of over three minutes. It will also cross Queenstown and Dunedin, New Zealand. Totality will also be viewable from two of Australia's external territories: Christmas Island and the Cocos (Keeling) Islands.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2046</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2071</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 11, 2086</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 18, 1920</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, May 18, 1920, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References