Solar eclipse of March 4, 1802

Last updated
Solar eclipse of March 4, 1802
SE1802Mar04T.png
Map
Type of eclipse
NatureTotal
Gamma −0.6943
Magnitude 1.0428
Maximum eclipse
Duration182 s (3 min 2 s)
Coordinates 44°00′S131°30′E / 44°S 131.5°E / -44; 131.5
Max. width of band196 km (122 mi)
Times (UTC)
Greatest eclipse5:14:29
References
Saros 117 (57 of 71)
Catalog # (SE5000) 9045

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, March 4, 1802, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1 day after perigee (on March 3, 1802, at 4:20 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of modern-day Antarctica, Australia, and Vanuatu. A partial solar eclipse was also visible for parts of Antarctica, Australia, Indonesia, and Oceania. [2]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

March 4, 1802 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1802 March 04 at 02:52:19.8 UTC
First Umbral External Contact1802 March 04 at 03:59:05.4 UTC
First Central Line1802 March 04 at 04:00:14.2 UTC
First Umbral Internal Contact1802 March 04 at 04:01:23.4 UTC
Equatorial Conjunction1802 March 04 at 04:35:58.0 UTC
Ecliptic Conjunction1802 March 04 at 05:07:25.2 UTC
Greatest Duration1802 March 04 at 05:12:48.7 UTC
Greatest Eclipse1802 March 04 at 05:14:28.9 UTC
Last Umbral Internal Contact1802 March 04 at 06:27:59.7 UTC
Last Central Line1802 March 04 at 06:29:07.6 UTC
Last Umbral External Contact1802 March 04 at 06:30:14.9 UTC
Last Penumbral External Contact1802 March 04 at 07:36:55.8 UTC
March 4, 1802 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.04283
Eclipse Obscuration1.08750
Gamma−0.69423
Sun Right Ascension22h57m10.9s
Sun Declination-06°42'08.1"
Sun Semi-Diameter16'07.1"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension22h58m31.2s
Moon Declination-07°19'20.7"
Moon Semi-Diameter16'36.4"
Moon Equatorial Horizontal Parallax1°00'56.8"
ΔT12.7 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March 1802
March 4
Ascending node (new moon)
March 19
Descending node (full moon)
SE1802Mar04T.png
Total solar eclipse
Solar Saros 117
Partial lunar eclipse
Lunar Saros 129

Eclipses in 1802

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 117

Inex

Triad

Solar eclipses of 1801–1805

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on April 13, 1801 and October 7, 1801 occur in the previous lunar year eclipse set, and the solar eclipses on January 1, 1805 (partial); June 26, 1805 (partial); and December 21, 1805 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1801 to 1805
Ascending node Descending node
SarosMapGammaSarosMapGamma
107March 14, 1801
SE1801Mar14P.png
Partial
−1.4434112 September 8, 1801
SE1801Sep08P.png
Partial
1.4657
117 March 4, 1802
SE1802Mar04T.png
Total
−0.6943122 August 28, 1802
SE1802Aug28A.png
Annular
0.7569
127 February 21, 1803
SE1803Feb21T.png
Total
−0.0075132 August 17, 1803
SE1803Aug17A.png
Annular
−0.0048
137February 11, 1804
SE1804Feb11H.png
Hybrid
0.7053142August 5, 1804
SE1804Aug05T.gif
Total
−0.7622
147January 30, 1805
SE1805Jan30P.gif
Partial
1.4651152July 26, 1805
SE1805Jul26Pb.gif
Partial
−1.4571

Saros 117

This eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

24 eclipse events between March 4, 1802 and July 28, 1870
March 4December 20–21October 8–9July 27–28May 15–16
117119121123125
SE1802Mar04T.png
March 4, 1802
SE1805Dec21A.gif
December 21, 1805
SE1809Oct09T.gif
October 9, 1809
SE1813Jul27T.gif
July 27, 1813
SE1817May16A.gif
May 16, 1817
127129131133135
SE1821Mar04T.gif
March 4, 1821
SE1824Dec20Am.gif
December 20, 1824
SE1828Oct09A.gif
October 9, 1828
SE1832Jul27T.gif
July 27, 1832
SE1836May15A.gif
May 15, 1836
137139141143145
SE1840Mar04A.gif
March 4, 1840
SE1843Dec21T.gif
December 21, 1843
SE1847Oct09A.gif
October 9, 1847
SE1851Jul28T.png
July 28, 1851
SE1855May16P.gif
May 16, 1855
147149151153
SE1859Mar04P.gif
March 4, 1859
SE1862Dec21P.gif
December 21, 1862
SE1866Oct08P.gif
October 8, 1866
SE1870Jul28Pb.gif
July 28, 1870

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2033Sep23P.png
September 23, 2033
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2091Aug15T.png
August 15, 2091
(Saros 127)
SE2120Jul25A.png
July 25, 2120
(Saros 128)
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 12, 1985</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, November 12, 1985, with a magnitude of 1.0388. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 2 hours after perigee, the Moon's apparent diameter was larger. Perigee did occur during the early portion of the eclipse.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Thursday, December 16 and Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 2, 1967</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 2, 1967, with a magnitude of 1.0126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Tuesday, December 25 and Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 6.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 6, 2076</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, January 6, 2076, with a magnitude of 1.0342. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 8.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2094</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 16, 2094, with a magnitude of 1.0342. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 10.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 19, 1816</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, November 19, 1816, with a magnitude of 1.0233. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 30, 1853</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 30, 1853, with a magnitude of 1.0485. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 8.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 28, 1802</span> Annular Solar eclipse August 28, 180

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, August 28, 1802, with a magnitude of 0.9367. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 3 hours after apogee, the Moon's apparent diameter was smaller.

References

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 28 September 2024.
  2. "Solar eclipse of March 4, 1802". NASA . Retrieved June 15, 2012.
  3. "Total Solar Eclipse of 1802 Mar 04". EclipseWise.com. Retrieved 28 September 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 117". eclipse.gsfc.nasa.gov.