Solar eclipse of November 15, 2077 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.4705 |
Magnitude | 0.9371 |
Maximum eclipse | |
Duration | 474 s (7 min 54 s) |
Coordinates | 7°48′N70°48′W / 7.8°N 70.8°W |
Max. width of band | 262 km (163 mi) |
Times (UTC) | |
Greatest eclipse | 17:07:56 |
References | |
Saros | 134 (47 of 71) |
Catalog # (SE5000) | 9682 |
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, [1] with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4 days after apogee (on November 11, 2077, at 17:20 UTC), the Moon's apparent diameter will be smaller. [2]
The path of annularity will be visible from parts of Oregon, southwestern Washington, northeastern California, Idaho, Nevada, Utah, Colorado, Arizona, New Mexico, Texas in the United States, the northeastern Yucatán Peninsula, the western tip of Cuba, Colombia, Venezuela, northern Brazil, Guyana, southern Suriname, and extreme southern French Guiana. A partial solar eclipse will also be visible for parts of North America, Central America, the Caribbean, South America, and West Africa.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2077 November 15 at 14:13:10.5 UTC |
First Umbral External Contact | 2077 November 15 at 15:22:03.8 UTC |
First Central Line | 2077 November 15 at 15:25:03.1 UTC |
First Umbral Internal Contact | 2077 November 15 at 15:28:03.6 UTC |
Equatorial Conjunction | 2077 November 15 at 16:47:52.0 UTC |
Ecliptic Conjunction | 2077 November 15 at 17:02:23.8 UTC |
Greatest Eclipse | 2077 November 15 at 17:07:56.2 UTC |
Greatest Duration | 2077 November 15 at 17:21:02.7 UTC |
Last Umbral Internal Contact | 2077 November 15 at 18:48:03.6 UTC |
Last Central Line | 2077 November 15 at 18:51:01.7 UTC |
Last Umbral External Contact | 2077 November 15 at 18:53:58.6 UTC |
Last Penumbral External Contact | 2077 November 15 at 20:02:45.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.93707 |
Eclipse Obscuration | 0.87810 |
Gamma | 0.47047 |
Sun Right Ascension | 15h26m24.3s |
Sun Declination | -18°45'33.3" |
Sun Semi-Diameter | 16'10.1" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 15h27m01.5s |
Moon Declination | -18°21'22.3" |
Moon Semi-Diameter | 14'56.9" |
Moon Equatorial Horizontal Parallax | 0°54'51.8" |
ΔT | 103.7 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
November 15 Descending node (new moon) | November 29 Ascending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 134 | Partial lunar eclipse Lunar Saros 146 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipses on January 6, 2076 and July 1, 2076 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2076 to 2079 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | June 1, 2076 Partial | −1.3897 | 124 | November 26, 2076 Partial | 1.1401 | |
129 | May 22, 2077 Total | −0.5725 | 134 | November 15, 2077 Annular | 0.4705 | |
139 | May 11, 2078 Total | 0.1838 | 144 | November 4, 2078 Annular | −0.2285 | |
149 | May 1, 2079 Total | 0.9081 | 154 | October 24, 2079 Annular | −0.9243 |
This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554; hybrid eclipses from January 3, 1573 through June 27, 1843; and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 72 as a partial eclipse on August 6, 2510. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 11 at 1 minutes, 30 seconds on October 9, 1428, and the longest duration of annularity will be produced by member 52 at 10 minutes, 55 seconds on January 10, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]
Series members 32–53 occur between 1801 and 2200: | ||
---|---|---|
32 | 33 | 34 |
June 6, 1807 | June 16, 1825 | June 27, 1843 |
35 | 36 | 37 |
July 8, 1861 | July 19, 1879 | July 29, 1897 |
38 | 39 | 40 |
August 10, 1915 | August 21, 1933 | September 1, 1951 |
41 | 42 | 43 |
September 11, 1969 | September 23, 1987 | October 3, 2005 |
44 | 45 | 46 |
October 14, 2023 | October 25, 2041 | November 5, 2059 |
47 | 48 | 49 |
November 15, 2077 | November 27, 2095 | December 8, 2113 |
50 | 51 | 52 |
December 19, 2131 | December 30, 2149 | January 10, 2168 |
53 | ||
January 20, 2186 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 23, 2047 and November 16, 2134 | ||||
---|---|---|---|---|
June 22–23 | April 10–11 | January 27–29 | November 15–16 | September 3–5 |
118 | 120 | 122 | 124 | 126 |
June 23, 2047 | April 11, 2051 | January 27, 2055 | November 16, 2058 | September 3, 2062 |
128 | 130 | 132 | 134 | 136 |
June 22, 2066 | April 11, 2070 | January 27, 2074 | November 15, 2077 | September 3, 2081 |
138 | 140 | 142 | 144 | 146 |
June 22, 2085 | April 10, 2089 | January 27, 2093 | November 15, 2096 | September 4, 2100 |
148 | 150 | 152 | 154 | 156 |
June 22, 2104 | April 11, 2108 | January 29, 2112 | November 16, 2115 | September 5, 2119 |
158 | 160 | 162 | 164 | |
June 23, 2123 | November 16, 2134 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
January 1, 1805 (Saros 109) | October 31, 1826 (Saros 111) | August 28, 1848 (Saros 113) | ||
July 29, 1859 (Saros 114) | June 28, 1870 (Saros 115) | May 27, 1881 (Saros 116) | April 26, 1892 (Saros 117) | March 29, 1903 (Saros 118) |
February 25, 1914 (Saros 119) | January 24, 1925 (Saros 120) | December 25, 1935 (Saros 121) | November 23, 1946 (Saros 122) | October 23, 1957 (Saros 123) |
September 22, 1968 (Saros 124) | August 22, 1979 (Saros 125) | July 22, 1990 (Saros 126) | June 21, 2001 (Saros 127) | May 20, 2012 (Saros 128) |
April 20, 2023 (Saros 129) | March 20, 2034 (Saros 130) | February 16, 2045 (Saros 131) | January 16, 2056 (Saros 132) | December 17, 2066 (Saros 133) |
November 15, 2077 (Saros 134) | October 14, 2088 (Saros 135) | September 14, 2099 (Saros 136) | August 15, 2110 (Saros 137) | July 14, 2121 (Saros 138) |
June 13, 2132 (Saros 139) | May 14, 2143 (Saros 140) | April 12, 2154 (Saros 141) | March 12, 2165 (Saros 142) | February 10, 2176 (Saros 143) |
January 9, 2187 (Saros 144) | December 9, 2197 (Saros 145) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
May 16, 1817 (Saros 125) | April 25, 1846 (Saros 126) | April 6, 1875 (Saros 127) |
March 17, 1904 (Saros 128) | February 24, 1933 (Saros 129) | February 5, 1962 (Saros 130) |
January 15, 1991 (Saros 131) | December 26, 2019 (Saros 132) | December 5, 2048 (Saros 133) |
November 15, 2077 (Saros 134) | October 26, 2106 (Saros 135) | October 7, 2135 (Saros 136) |
September 16, 2164 (Saros 137) | August 26, 2193 (Saros 138) |
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, December 4, 1983, with a magnitude of 0.9666. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.5 days before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, June 11, 2048, with a magnitude of 0.9441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 15.5 hours after apogee, the Moon's apparent diameter will be smaller.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 15 hours before apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 8 hours after apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.4 days after apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 22, 2077, with a magnitude of 1.029. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, March 10, 2081, with a magnitude of 0.9304. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.3 days after apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, July 2 and Monday, July 3, 2084, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 10 minutes after apogee, the Moon's apparent diameter will be smaller. Thus, apogee did occur slightly before the peak of this eclipse.
A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.