Solar eclipse of October 24, 2060 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.2625 |
Magnitude | 0.9277 |
Maximum eclipse | |
Duration | 486 s (8 min 6 s) |
Coordinates | 25°48′S28°06′E / 25.8°S 28.1°E |
Max. width of band | 281 km (175 mi) |
Times (UTC) | |
Greatest eclipse | 9:24:10 |
References | |
Saros | 144 (19 of 70) |
Catalog # (SE5000) | 9643 |
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, [1] with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 18 hours before apogee (on October 25, 2060, at 1:20 UTC), the Moon's apparent diameter will be smaller. [2]
The path of annularity will be visible from parts of southern Guinea, Sierra Leone, Liberia, Côte d'Ivoire, the Annobón Natural Reserve, Angola, northeastern Namibia, Botswana, and South Africa. A partial solar eclipse will also be visible for parts of eastern Brazil, Africa, and Antarctica.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2060 October 24 at 06:19:40.5 UTC |
First Umbral External Contact | 2060 October 24 at 07:26:08.2 UTC |
First Central Line | 2060 October 24 at 07:29:18.5 UTC |
First Umbral Internal Contact | 2060 October 24 at 07:32:29.2 UTC |
First Penumbral Internal Contact | 2060 October 24 at 08:43:57.6 UTC |
Greatest Eclipse | 2060 October 24 at 09:24:10.4 UTC |
Ecliptic Conjunction | 2060 October 24 at 09:27:20.1 UTC |
Equatorial Conjunction | 2060 October 24 at 09:39:25.2 UTC |
Greatest Duration | 2060 October 24 at 09:41:30.5 UTC |
Last Penumbral Internal Contact | 2060 October 24 at 10:04:00.7 UTC |
Last Umbral Internal Contact | 2060 October 24 at 11:15:41.4 UTC |
Last Central Line | 2060 October 24 at 11:18:52.9 UTC |
Last Umbral External Contact | 2060 October 24 at 11:22:03.9 UTC |
Last Penumbral External Contact | 2060 October 24 at 12:28:35.3 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.92766 |
Eclipse Obscuration | 0.86055 |
Gamma | −0.26249 |
Sun Right Ascension | 13h58m17.5s |
Sun Declination | -12°04'28.2" |
Sun Semi-Diameter | 16'04.8" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 13h57m52.2s |
Moon Declination | -12°17'09.7" |
Moon Semi-Diameter | 14'42.1" |
Moon Equatorial Horizontal Parallax | 0°53'57.3" |
ΔT | 91.0 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
October 9 Ascending node (full moon) | October 24 Descending node (new moon) | November 8 Ascending node (full moon) |
---|---|---|
Penumbral lunar eclipse Lunar Saros 118 | Annular solar eclipse Solar Saros 144 | Penumbral lunar eclipse Lunar Saros 156 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.
Solar eclipse series sets from 2058 to 2061 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 22, 2058 Partial | −1.3194 | 124 | November 16, 2058 Partial | 1.1224 | |
129 | May 11, 2059 Total | −0.508 | 134 | November 5, 2059 Annular | 0.4454 | |
139 | April 30, 2060 Total | 0.2422 | 144 | October 24, 2060 Annular | −0.2625 | |
149 | April 20, 2061 Total | 0.9578 | 154 | October 13, 2061 Annular | −0.9639 |
This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]
Series members 5–26 occur between 1801 and 2200: | ||
---|---|---|
5 | 6 | 7 |
May 25, 1808 | June 5, 1826 | June 16, 1844 |
8 | 9 | 10 |
June 27, 1862 | July 7, 1880 | July 18, 1898 |
11 | 12 | 13 |
July 30, 1916 | August 10, 1934 | August 20, 1952 |
14 | 15 | 16 |
August 31, 1970 | September 11, 1988 | September 22, 2006 |
17 | 18 | 19 |
October 2, 2024 | October 14, 2042 | October 24, 2060 |
20 | 21 | 22 |
November 4, 2078 | November 15, 2096 | November 27, 2114 |
23 | 24 | 25 |
December 7, 2132 | December 19, 2150 | December 29, 2168 |
26 | ||
January 9, 2187 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 1, 2011 and October 24, 2098 | ||||
---|---|---|---|---|
May 31–June 1 | March 19–20 | January 5–6 | October 24–25 | August 12–13 |
118 | 120 | 122 | 124 | 126 |
June 1, 2011 | March 20, 2015 | January 6, 2019 | October 25, 2022 | August 12, 2026 |
128 | 130 | 132 | 134 | 136 |
June 1, 2030 | March 20, 2034 | January 5, 2038 | October 25, 2041 | August 12, 2045 |
138 | 140 | 142 | 144 | 146 |
May 31, 2049 | March 20, 2053 | January 5, 2057 | October 24, 2060 | August 12, 2064 |
148 | 150 | 152 | 154 | 156 |
May 31, 2068 | March 19, 2072 | January 6, 2076 | October 24, 2079 | August 13, 2083 |
158 | 160 | 162 | 164 | |
June 1, 2087 | October 24, 2098 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
October 9, 1809 (Saros 121) | September 7, 1820 (Saros 122) | August 7, 1831 (Saros 123) | July 8, 1842 (Saros 124) | June 6, 1853 (Saros 125) |
May 6, 1864 (Saros 126) | April 6, 1875 (Saros 127) | March 5, 1886 (Saros 128) | February 1, 1897 (Saros 129) | January 3, 1908 (Saros 130) |
December 3, 1918 (Saros 131) | November 1, 1929 (Saros 132) | October 1, 1940 (Saros 133) | September 1, 1951 (Saros 134) | July 31, 1962 (Saros 135) |
June 30, 1973 (Saros 136) | May 30, 1984 (Saros 137) | April 29, 1995 (Saros 138) | March 29, 2006 (Saros 139) | February 26, 2017 (Saros 140) |
January 26, 2028 (Saros 141) | December 26, 2038 (Saros 142) | November 25, 2049 (Saros 143) | October 24, 2060 (Saros 144) | September 23, 2071 (Saros 145) |
August 24, 2082 (Saros 146) | July 23, 2093 (Saros 147) | June 22, 2104 (Saros 148) | May 24, 2115 (Saros 149) | April 22, 2126 (Saros 150) |
March 21, 2137 (Saros 151) | February 19, 2148 (Saros 152) | January 19, 2159 (Saros 153) | December 18, 2169 (Saros 154) | November 17, 2180 (Saros 155) |
October 18, 2191 (Saros 156) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
April 3, 1829 (Saros 136) | March 15, 1858 (Saros 137) | February 22, 1887 (Saros 138) |
February 3, 1916 (Saros 139) | January 14, 1945 (Saros 140) | December 24, 1973 (Saros 141) |
December 4, 2002 (Saros 142) | November 14, 2031 (Saros 143) | October 24, 2060 (Saros 144) |
October 4, 2089 (Saros 145) | September 15, 2118 (Saros 146) | August 26, 2147 (Saros 147) |
August 4, 2176 (Saros 148) |
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 9 hours before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, September 22 and Monday, September 23, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.9 days before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, December 16 and Monday, December 17, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.7 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 22 hours before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, April 10 and Monday, April 11, 2089, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 7 days after apogee and 6.8 days before perigee.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit between Friday, July 9 and Saturday, July 10, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter was smaller.